Iowa Watershed Approach Phase II: Upper Iowa River Watershed Project Evaluation

by

Larry Weber, Antonio Arenas, Elliot Anderson, Samuel Landsteiner, Adam Weis, Kate Giannini, Daniel Gilles, Nathan Young

Sponsored by

The Iowa Watershed Approach

IOWA

IIHR—Hydroscience and Engineering

IIHR Technical Report No. 539

Prepared by:
IIHR—Hydroscience and Engineering
College of Engineering
The University of Iowa
Iowa City, Iowa 52242-158 USA

April 2023
Table of Contents

Table of Contents

Upper Iowa Project Evaluation | iii

Acknowledgments ... vi

List of Figures ... vii

List of Tables .. xi

1. Introduction ... 1

2. Iowa’s Hydrology and Water Quality .. 5
 a. Land Surface and Use .. 5
 b. Climate and Water Cycle ... 9
 i. Statewide Precipitation ... 10
 ii. The Water Cycle in Iowa .. 11
 iii. Shallow Groundwater and Soil Moisture Trends 12
 iv. Floods .. 13
 v. Droughts .. 17
 c. Hydrological Alterations in Iowa and the Iowa Watershed Approach Study Areas 18
 i. Hydrological Alterations from Agricultural-Related Land Use Changes 18
 ii. Hydrological Alterations Induced by Climate Change 20
 iii. Hydrological Alterations Induced by Urban Development 22
 d. Assessment of Iowa’s Water Quality .. 23
 i. Iowa Water-Quality History .. 23
 ii. Water Quality in the Post–Clean Water Act Era 23
 e. Web-Based Information Systems of Flood and Water-Quality Data 26
 i. The Iowa Flood Information System (IFIS) 26
 ii. The Iowa Water-Quality Information System 29
 iii. The Iowa Watershed Approach Information System (IWAIS) 30

3. Upper Iowa Watershed Description ... 32
 a. Hydrology .. 32
 b. Geology and Soils .. 34
 c. Topography ... 37
 d. Land Use ... 37
 e. BMP Mapping .. 38

Upper Iowa Project Evaluation | iii
4. Water Quality Analysis ...43
 a. Data Availability ...43
 i. Data Requirements ..43
 ii. Sources of Data ...43
 b. Methods ...45
 i. Nitrate ..46
 ii. Orthophosphate ..47
 iii. Particulate Phosphorus ...48
 c. Results ..50
 i. Nitrate Estimates ...51
 ii. Phosphorus Estimates ..54
 iii. Trend Detection ...57
 d. Conclusions ...58

5. Model Development ...59
 a. Hydrologic Model Description ..59
 b. Upper Iowa Model Construction ...60
 c. Model Calibration ...65
 d. Implementation of IWA Projects in the Model70

6. Project Inventory ..72
 a. IWA Projects in the Upper Iowa Watershed72
 b. Hydraulics of Flood Mitigation Projects76
 c. Project Summary ...78

7. Upper Iowa Hydrologic Assessment ...79
 a. Local Impacts of IWA Projects ...79
 b. Watershed-Scale Effects ...85
 c. Limitations of the IWA Projects ...87
 d. Future Implications ...87

8. Summary and Conclusions ..88
a. Watershed Characteristics ... 88
b. Water-Quality Conditions .. 89
c. Hydrologic Model ... 89
d. IWA Project Summary ... 89
e. Evaluation of the IWA Projects ... 89
f. Conclusion .. 90
Appendix A – References .. 92
Acknowledgments

The Iowa Flood Center and IIHR—Hydroscience and Engineering would like to thank the following for participating in and contributing to the implementation of flood mitigation structures in the Middle Cedar Watershed:

- Members of the Upper Iowa Watershed Management Authority
- Project Coordinator of the Upper Iowa Watershed Management Authority
- Northeast Iowa RC&D
- Shive-Hattery, Inc.
- Landowners and stakeholders of the Upper Iowa Watershed
- Winneshiek County

The success of the Iowa Watershed Approach (IWA) depends on collaborative partnerships among many statewide organizations and local stakeholders, who together will carry out the work necessary to achieve the goals of the IWA. Partners include, but are not limited to:

- U.S. Department of Housing and Urban Development (HUD)
- U.S. Army Corps of Engineers
- Iowa Silver Jackets Flood Risk Management Team
- Iowa Economic Development Authority
- Iowa Homeland Security and Emergency Management
- University of Iowa (IIHR—Hydroscience and Engineering, Iowa Flood Center, Center for Evaluation and Assessment)
- Iowa State University (Iowa Nutrient Research Center, Iowa Water Center, Daily Erosion Project, ISU Extension & Outreach)
- University of Northern Iowa (Tallgrass Prairie Center)
- Watershed Management Authorities and their member entities
- Iowa Department of Natural Resources
- Iowa Department of Transportation
- Iowa Association of Counties
- Iowa Department of Agriculture and Land Stewardship
- Iowa Soybean Association
- Iowa Natural Heritage Foundation
- Iowa Corn Growers Association
- Iowa Farm Bureau
- Iowa Agricultural Water Alliance
- Cities of Dubuque, Coralville, and Storm Lake
- The Nature Conservancy, Iowa Chapter
- Local Resource Conservation and Development Offices
- Benton, Buena Vista, Fremont, Iowa, Johnson, Mills, Winneshiek, and Howard counties
List of Figures

Figure 1-1: Public workers wade through streets of the unincorporated community of Freeport, IA after a fall 2016 flood event. .. 1

Figure 1-2: The Iowa Watershed Approach study areas include eight distinct watersheds and three urban areas. .. 2

Figure 1-3: Flood mitigation pond (UI-039 Branhagen) constructed as part of the IWA in the Community of Nordness HUC12, a sub-watershed of the Upper Iowa HUC8. 3

Figure 1-4: Flood mitigation on-road structure (UI-022 Weselmann) constructed as part of the IWA in the Trout Creek HUC12, a sub-watershed of the Upper Iowa HUC8. 4

Figure 2-1: The IWA watersheds’ positions within the landform regions of Iowa. 6

Figure 2-2: Historic vegetation of Iowa 1832–59. Raw data downloaded from the Iowa Geographic Map Server (https://ortho.gis.iastate.edu/). .. 7

Figure 2-3: Land use composition in the state of Iowa 2016. Cropland Data Layer. 8

Figure 2-4: Percent of Iowa’s total area planted with row crops between 2001 and 2016. Cropland Data Layer.. 8

Figure 2-5: Soils requiring tile drainage for full productivity and drainage districts. Raw data source: DNR’s NRGIS Library. .. 9

Figure 2-6: Average precipitation (inches): (a) annual; and (b) growing season (April–October). Precipitation estimates are based on the 30-year annual average (1981–2010). (Raw data downloaded from: http://www.prism.oregonstate.edu/). .. 10

Figure 2-7: Statewide average monthly precipitation. Precipitation estimates are based on the 30-year annual average (1981–2010). (Raw data downloaded from: http://www.prism.oregonstate.edu/). .. 11

Figure 2-8: Iowa water cycle for the IWA watersheds. This shows the partitioning of average precipitation into evapotranspiration, surface flow, and baseflow components. 12

Figure 2-9: Shallow groundwater data (USGS wells). .. 13

Figure 2-10: The extent of the flooding during the 1993 and 2008 floods (Bradley, 2010). 14

Figure 2-11: Number of flood-related federally declared disasters in Iowa counties (1988–2016). Data source: https://www.fema.gov/ .. 16

Figure 2-12: The number of flood-related federally declared disasters in Iowa (1988–2016). Data source: https://www.fema.gov/ .. 17

Figure 2-13. Drought conditions, October 09, 2012 (Source: http://droughtmonitor.unl.edu/). .. 17
Figure 2-14: Observed change in heavy precipitation (the heaviest 1%) between 1958 and 2016. Figure taken from “The Climate Science Special Report” (Easterling et al. 2017) (https://science2017.globalchange.gov/). .. 21

Figure 2-15: Projected change in heavy precipitation. Twenty-year return period amount for daily precipitation for mid- (left maps) and late-21st century (right maps). Results are shown for a lower emissions scenario (top maps; RCP4.5) and for a higher emissions scenario (bottom maps, RCP8.5). Figure taken from “The Climate Science Special Report” (Easterling et al. 2017) (https://science2017.globalchange.gov/). RCP stands for Representative Concentration Pathway .. 22

Figure 2-16: Causes of impairments in Iowa’s impaired waters. (Iowa Department of Natural Resources, 2018). .. 25

Figure 2-17: Numbers of impaired Iowa waters, 1998–2016. (Iowa Department of Natural Resources, 2018) .. 25

Figure 2-18. Statewide floodplain map data showing different levels of annual flood risk. 27

Figure 2-19. Flood inundation map library for the Upper Iowa River in the city of Decorah. 27

Figure 2-20. USGS (green) and Iowa Flood Center (blue) stream-stage monitoring locations displayed in the Iowa Flood Information System (IFIS) .. 28

Figure 2-21. IIHR—Hydroscience and Engineering and USGS surface water-quality monitoring locations as displayed on the Iowa Water-Quality Information System (IWQIS). 30

Figure 2-22. Example IWAIS interface view showing the number of existing water and sediment control basins within each HUC12 in the Upper Iowa Watershed. .. 31

Figure 3-1. The Upper Iowa River Watershed (HUC8 07060002). .. 32

Figure 3-2. Average annual precipitation (inches). Estimates are based on the 30-year annual average (1981-2010). .. 33

Figure 3-3. Bar graph of annual precipitation .. 33

Figure 3-4. Annual ratio of streamflow to precipitation ... 34

Figure 3-5. Annual ratio of baseflow to streamflow ... 34

Figure 3-6. Distribution of Hydrologic Soil Groups in the Upper Iowa River Watershed. Hydrologic Soil Groups reflect the degree of runoff potential a particular soil has, with Type A representing the lowest runoff potential and Type D representing the highest runoff potential. .. 36

Figure 3-7. Topography of the Upper Iowa River Watershed .. 37

Figure 3-8. Land use composition in the Upper Iowa River Watershed, per the 2017 USDA Cropland Data Layer .. 38
Figure 3-9. Iowa Best Management Practices Mapping Project................................. 39
Figure 3-10. Potential BMPs. Ponds Dams represent nutrient removal wetlands............ 40
Figure 3-11. Stage/discharge gages in the Upper Iowa River Watershed 41
Figure 4-1. Dorchester, IA data collection site.. 44
Figure 4-2. Annual days with data for the Upper River at Dorchester, IA....................... 45
Figure 4-3. Daily flow values for the Upper Iowa River at Dorchester, IA...................... 46
Figure 4-4. WRTDSK nitrate model results... 47
Figure 4-5. WRTDSK orthophosphate model results.. 48
Figure 4-6. Turbidity-based surrogate model for Part P... 49
Figure 4-7. Daily nitrate concentrations... 51
Figure 4-8. Average annual nitrate concentrations.. 52
Figure 4-9. Boxplots of monthly nitrate concentrations... 53
Figure 4-10. Daily nitrate loads.. 53
Figure 4-11. Yearly nitrate and water yields... 54
Figure 4-12. Daily TP concentrations.. 54
Figure 4-13. Annual average TP concentrations... 55
Figure 4-14. Boxplots of monthly TP concentrations... 56
Figure 4-15. Daily TP loads... 56
Figure 4-16. Yearly TP and water yields... 57
Figure 5-1. Vertical zones of a Voronoi element in GHOST: surface, unsaturated, and saturated zones.. 59
Figure 5-2. The hydrologic cycle calculated by GHOST (Politano, 2019)..................... 60
Figure 5-3. The Voronoi mesh and stream network used in the Upper Iowa GHOST model...... 61
Figure 5-4. The mesh within IWA focus areas was constructed with a finer resolution than the rest of the watershed... 63
Figure 5-5. GHOST mesh with elements’ land use classifications................................. 64
Figure 5-6. The location of the meteorological forcing data pixels and USGS gauges used in the Upper Iowa Watershed model... 65
Figure 5-7. Comparison of simulated (black) and observed (blue) daily average discharge at Dorchester (top), Decorah (middle), and Bluffton (bottom)................................. 67
Figure 5-8. Observed and simulated mean monthly runoff depths from 2003–2020 at Dorchester (top), Decorah (middle), and Bluffton (bottom). ... 68

Figure 5-9. Annual peak discharge plotted against a 1:1 line, showing how well modeled peaks matched observed values at Dorchester (top right), Decorah (top left), and Bluffton (bottom). .. 69

Figure 5-10. Daily flow duration curves at Dorchester (top), Decorah (middle), and Bluffton (bottom). .. 70

Figure 5-11. A portion of the GHOST model that shows how project effects are simulated by dumping the attenuated outflow hydrograph calculated for each project while eliminating rainfall upstream, which would produce the original, unaltered streamflow. 71

Figure 6-1: Location and type of the 36 IWA projects in the Upper Iowa Watershed. Note that in several instances, two projects are too close together to appear separate. 76

Figure 6-2: A classic comparison of a streamflow hydrograph with and without a flood mitigation project. The addition of the project does not change the volume of water moved but lowers the peak flow passed and gradually releases the water at lower rates. .. 77

Figure 6-3: Schematic of a pond constructed to provide flood storage. .. 78

Figure 7-1. Rainfall hyetograph from the design storm used in GHOST to test the effects of projects on flood peak reductions. .. 79

Figure 7-2. The location of projects UI-023, UI-036, UI-049, UI-039, along with hydrographs comparing the streamflow with (solid red) and without (dashed black) projects at points A, B, C, D, and E.. 81

Figure 7-3. Flood peak reduction (red text) at the outlets of HUC12s with projects. 86

Figure 7-4. Approximate flood storage and cost required to achieve a 20% peak reduction in the top-10 flood events between 2000–2022, compared to the IWA. The 1993 Flood is also included for reference. .. 88
List of Tables

Table 2-1: FEMA disaster declarations in Iowa Counties (1988–2016). Data source: https://www.fema.gov/ ... 15

Table 2-2. Agricultural-Related Alterations and Hydrologic Impacts ... 19

Table 3-1. Approximate Hydrologic Soil Group Percentages by Area for the Upper Iowa River Watershed. ... 36

Table 3-2. Discharge from the Five Largest Flooding Events at USGS Gaging Stations in the Upper Iowa River Watershed including; the Upper Iowa River at Bluffton, Upper Iowa River at Decorah and the Upper Iowa River near Dorchester ... 41

Table 4-1. WRTDSK model performance metrics. .. 47

Table 4-2. Descriptive statistics for the Upper Iowa flows and nutrients .. 50

Table 4-3. Trend analysis results. .. 58

Table 5-1. Performance parameters for the calibrated GHOST model. .. 67

Table 6-1: Project Summary Table .. 73

Table 7-1. Drainage area and storage capacity of IWA Projects relative to their HUC12 and the Upper Iowa River Watershed (UI) .. 86
1. Introduction

From 2011–2013, Iowa suffered eight Presidential Disaster Declarations encompassing 73 counties and more than 70% of the state. As devastating as these events were, this period is but a brief moment in Iowa’s long history of enduring and recovering from major floods. Figure 1-1 shows just one example of the devastation caused by floods in Freeport in the fall of 2016. Long-term data show that heavy precipitation and flood events are increasing in frequency across the Midwest, and Iowans need to be prepared for the economic, social, and environmental impacts of these changing trends.

![Public workers wade through streets of the unincorporated community of Freeport, IA after a fall 2016 flood event.](image)

In January 2016, the state of Iowa received a $97 million award for the Iowa Watershed Approach (IWA). The grant was part of the U.S. Department of Housing and Urban Development’s (HUD) National Disaster Resilience Competition, which funds cutting-edge projects to address unmet needs from past natural disasters and to reduce Americans’ vulnerability to future disasters. The project ends in September 2022. The IWA program takes a holistic approach to address flooding at the watershed scale, recognizing that upstream and downstream communities need to voluntarily work together to increase community flood resilience (Weber et al., 2018).

The IWA pursues six specific goals:

1) Reduce flood risk
2) Improve water quality
3) Increase community flood resilience
4) Engage stakeholders through collaboration, outreach, and education
5) Improve quality of life and health for Iowans, especially for vulnerable populations
6) Develop a program that is scalable and replicable throughout the Midwest and United States
The IWA brings Iowans together to address the factors that contribute to floods. Eight distinct watersheds were involved in the project, shown in Figure 1-2, including the Upper Iowa River, Upper Wapsipinicon River, Middle Cedar River, Clear Creek, English River, North Raccoon River, East Nishnabotna River, West Nishnabotna River, and Bee Branch Creek. In addition, urban projects in the cities of Dubuque, Coralville, and Storm Lake focused on infrastructure improvements to mitigate flood risk.

Figure 1-2: The Iowa Watershed Approach study areas include eight distinct watersheds and three urban areas.

Each watershed formed a Watershed Management Authority (WMA) that brings local stakeholders together to prioritize their watershed improvement needs, share resources, and foster new partnerships and collaborations. As part of Phase 1 of the IWA, IIHR—Hydroscience and Engineering (IIHR) and the Iowa Flood Center (IFC) developed a hydrologic assessment for each watershed that provided WMAs, local leaders, landowners, and residents with an understanding of the hydrology — the movement of water — within their watershed. This assessment delivered valuable information to stakeholders to help guide strategic decision-making to efficiently address flooding and water-quality concerns.
Figure 1-3: Flood mitigation pond (UI-039 Branhagen) constructed as part of the IWA in the Community of Nordness HUC12, a sub-watershed of the Upper Iowa HUC8.

The results of the Phase 1 efforts were used to determine future goals and strategies for best management practices (BMPs) and was integrated into the watershed management plan; a long-term vision for the watershed to reduce floods and improve water quality. IWA funds provided 90% cost-share assistance for BMP construction of ponds, wetlands, oxbow reconstructions, and more. IIHR and IFC have developed this Phase 2 report for the Upper Iowa Watershed to detail the practices constructed and evaluate their individual and cumulative benefits.

Ultimately, 36 BMPs were completed in the Upper Iowa Watershed as part of the IWA:

- 11 Ponds
- 7 On-road Structures
- 6 WASCOBs
- 6 Grassed Waterways
- 3 Grade Stabilization Structures
- 2 Wetlands
- 1 Terrace

Figure 1-3 and Figure 1-4 show examples of these projects. The total design and construction costs of these projects was just over $3.3 million. Chapter 6 provides details of all 36 practices, and Chapter 7 summarizes the results of the project evaluation.
Figure 1-4: Flood mitigation on-road structure (UI-022 Weselmann) constructed as part of the IWA in the Trout Creek HUC12, a sub-watershed of the Upper Iowa HUC8.
2. Iowa’s Hydrology and Water Quality

This chapter summarizes Iowa’s water cycle, geology, land use, hydrology, and water quality across the state. The authors examined precipitation, streamflow, and shallow groundwater records to describe how much precipitation falls, how that water moves through the landscape, when storms typically produce river flooding, and how Iowa’s hydrology, land use, and water quality have changed over the past decades and century. In addition, this chapter includes an overview of two novel web-based platforms that allow access to Iowa’s flood and water-quality data. The information presented in this chapter is valid for the entire state, but some sub-sections place emphasis on the eight rural IWA watersheds shown in Figure 1-2.

a. Land Surface and Use

Iowa has a unique and diverse landscape that is the culmination of geologic processes occurring over millennia. Iowa has been subdivided into seven distinct landform regions, shown in Figure 2-1 (Prior, 1991). The Iowa Watershed Approach projects are primarily contained within four of these regions: the Paleozoic Plateau, the Iowan Surface, the Southern Iowa Drift Plain, and the Des Moines Lobe landform regions. Surficial materials are underlain by a host of sedimentary bedrock formations, including carbonate (limestone and dolomite), sandstone, and shale. Most of these rocks were deposited during the Paleozoic Era (541–299 million years ago), with others being deposited during the earlier Mesozoic Era (201–66 million years ago).

Following an extensive period of non-deposition and erosion, Iowa was glaciated numerous times during the Quaternary Period. At least seven episodes of glaciation occurred between 2.6 and 0.5 million years ago. These are collectively known as the Pre-Illinoian glacial advances. More recently, the Des Moines Lobe glacier advanced into north-central Iowa, reaching its maximum extent approximately 14,000 years ago. Subsequent loess (wind-blown silt) deposition occurred during and after this time, mantling much of the state. These glacial processes and erosional periods shaped the landform regions of Iowa.

The Southern Iowa Drift Plain encompasses the southern portion of the state and consists of several layers of Pre-Illinoian till deposits mantled by loess. Landscape development following the ice retreat eroded most of the features typically associated with glaciers and created the well-developed drainage network we see today. The Loess Hills landform region in the western part of the state has the same stratigraphic units as the Southern Iowa Drift Plain, but with thicker loess deposits because of its proximity to the source — the Missouri River alluvial plains.

In contrast, northeastern Iowa experienced a period of extreme cold (21,000 to 16,500 years ago) during the last glacial maximum, resulting in extensive erosion of the landscape and the formation of the Iowan Surface landform region. Characteristic features include gently rolling topography, common glacial “erratics” (rocks and boulders not native to Iowa transported here by glaciers), and loess-mantled paha (northwest to southeast trending uneroded upland remnants of the former landscape). The depth to bedrock is often shallow on this landform region. Surficial materials
consist of poorly consolidated glacial deposits with the potential for extensive local sand bodies. In areas where the depth to bedrock is shallow, these materials provide limited protection from surface water infiltrating into bedrock.

The Paleozoic Plateau borders the Iowan Surface and experienced many of the same processes. The primary difference is that shallow bedrock dominates the Paleozoic Plateau. Characteristic features include steep sided, deeply entrenched valleys; abundant rock exposures; and common karst features. The unconsolidated materials consist of relatively thin glacial deposits with a loess mantle. Carbonate bedrock is susceptible to the formation of karst features, and numerous caves, springs, and sinkholes are identified throughout this landform region.

The younger Des Moines Lobe landform region exists in north-central Iowa. This region was glaciated between approximately 15,000 and 12,000 years ago, with several advances and retreats before the glacier finally receded. Because of the relative youth of this region, erosional processes have not erased the surficial features typical of glacial landscapes. Characteristic features include glacial moraines (arcuate ridges associated with stationary periods), ice contact features (knobs, kettles, and hummocky terrain), fine-grained lake and pond deposits, and outwash (coarse sand and gravel carried by rivers draining glaciers). Natural drainage on the Des Moines Lobe is typically very poor.

Figure 2-1: The IWA watersheds’ positions within the landform regions of Iowa.

Prairies covered Iowa before the arrival of European settlers, as depicted in historical vegetation shown in Figure 2-2. Forests and wetlands created a diverse set of habitats for animals, and prairies
contained up to 300 species of grasses and flowers. As settlers tilled the prairie and planted crops such as wheat, corn, and buckwheat, the land cover of Iowa shifted to a majority agricultural state (Schilling et al., 2008).

Figure 2-2: Historic vegetation of Iowa 1832–59. Raw data downloaded from the Iowa Geographic Map Server (https://ortho.gis.iastate.edu/).

Today, corn and soybeans cover 64% of Iowa (see Figure 2-3), with only small prairie remnants remaining. Several factors make Iowa an excellent place to sustain agricultural activities, including the rich topsoil left behind by the prairies; advances in farming technology including fertilizers, pesticides, and herbicides; and rainfall patterns, among others. Over the past 15 years, the percentage of Iowa’s land used for growing corn and soybeans has stayed relatively stable at near 60%. The percentage of Iowa land area devoted to growing corn or soybeans is shown in Figure 2-4.
Figure 2-3: Land use composition in the state of Iowa 2016. Cropland Data Layer.

Figure 2-4: Percent of Iowa’s total area planted with row crops between 2001 and 2016. Cropland Data Layer.
A significant portion of Iowa soils require sub-surface drainage to achieve optimal yields for row crops. Areas that likely require tile drainage are shown in Figure 2-5. It is estimated that installation of tile drainage peaked between the late 1800s and the mid-1900s, but today landowners continue to expand and upgrade drainage systems. In some areas (mostly in the Des Moines Lobe), public drainage districts were created to facilitate drainage over large areas. Drainage districts, also shown in Figure 2-5, have the power to tax and bond and are governed by trustees.

Figure 2-5: Soils requiring tile drainage for full productivity and drainage districts. Raw data source: DNR's NRGIS Library.

b. Climate and Water Cycle

Iowa is characterized by a humid continental climate with marked seasonal temperature variations, typically experiencing hot summers and cold winters. Annual average temperatures range between approximately 40°F and 60°F. The coldest and warmest months of the year are January and June, respectively. In January, the normal daily minimum temperatures range between 6°F and 17°F. In June, the normal daily maximum temperatures are in the 78–84°F range. Severe weather can impact regions of the state between the spring and fall; heavy rains and tornados are the most common of these events. Precipitation records show that Iowa typically receives the bulk of its annual precipitation in the spring and the summer.
i. Statewide Precipitation

Iowa’s precipitation spatial patterns are marked by a smooth transition of annual precipitation across its landscape from the southeast to the northwest, as shown in Figure 2-6. The average annual precipitation reaches 40 inches in the southeast corner and decreases to 26 inches in the northwest corner.

Figure 2-6: Average precipitation (inches): (a) annual; and (b) growing season (April–October). Precipitation estimates are based on the 30-year annual average (1981–2010). (Raw data downloaded from: http://www.prism.oregonstate.edu/).

Records show small variations in average annual precipitation among the eight IWA watersheds; the North Raccoon receives the least (33.8 inches), and the English River the most (36.6 inches). Historically, the quantity of annual precipitation presented in Figure 2-6b has been ideal for
agricultural needs, such that Iowa has not required irrigation systems like other parts of the country. The state’s average precipitation between April and October is approximately 27 inches, and the months with highest precipitation accumulations (May, June, and July) occur during the peak of the growing season. These climatological characteristics make Iowa an ideal place for agriculture.

![Figure 2-7: Statewide average monthly precipitation. Precipitation estimates are based on the 30-year annual average (1981–2010). (Raw data downloaded from: http://www.prism.oregonstate.edu/).](image)

ii. The Water Cycle in Iowa

A large portion of Iowa’s precipitation evaporates into the atmosphere — either directly from lakes and streams, or by transpiration from crops and vegetation. What doesn’t evaporate drains into streams and rivers. The average annual partitioning of precipitation into evapotranspiration, surface flow, or base flow in each IWA watershed is shown in Figure 2-8.

Evapotranspiration

In Iowa, most precipitation leaves by evapotranspiration; for the IWA watersheds, evapotranspiration accounts for between 66% and 79% of precipitation. Moving westward in the state, a larger fraction of the precipitation evaporates.

Surface Flow

The precipitation that drains into streams and rivers can take two different paths. During rainy periods, some water quickly drains across the land surface, causing streams and rivers to rise in the hours and days following the storm. This portion of the flow is often called “surface flow,” even though some of the water may soak into the ground and discharge later (e.g., through a tile drainage system).
Baseflow

The rest of the water that drains into streams and rivers takes a longer, slower path; first, it infiltrates into the ground and percolates down to the groundwater. Then it slowly moves toward a stream. The groundwater eventually reaches the stream, maintaining flows in a river even during extended dry periods. This portion of the flow is often called “baseflow.” In hydrologic analyses, subsurface drainage flows are typically lumped together with groundwater flows.

Figure 2-8: Iowa water cycle for the IWA watersheds. This shows the partitioning of average precipitation into evapotranspiration, surface flow, and baseflow components.

iii. Shallow Groundwater and Soil Moisture Trends

Shallow groundwater and soil moisture conditions can play an important role in the transformation of rainfall into runoff. For example, several studies have identified the occurrence of very wet winters and springs (and the subsequent high soil moisture and groundwater levels) as contributing factors to the major floods of 1993 and 2008 (Linhart and Eash, 2010; Mutel, 2010; Bradley, 2010; Smith et al., 2013). Across the state, almost 400 sensors continuously monitor the condition (e.g., streamflow and stage) of the Iowa rivers. In contrast, long-term continuous data on groundwater levels or soil moisture are sparse. Figure 2-9 displays shallow groundwater information from two
United States Geological Survey (USGS) wells located in two different Iowa counties. The location of the water table is influenced by several factors, such as location on the landscape, land cover, soil type, etc. In Iowa, it is very common to find the water table within the first 25 feet of the soil column, except in the deep loess hills in western Iowa and incised bedrock valleys of northeast Iowa.

![Graph of water table depth over time for Hancock and Montgomery Counties](image)

Figure 2-9: Shallow groundwater data (USGS wells).

iv. Floods

Rivers and streams have a finite capacity to convey water within their banks. When the amount of water surpasses that capacity, flooding occurs. Floods are typically related to large amounts of precipitation or snow melt and saturated or frozen soil. In Iowa, historic records show that the great majority (>90%) of floods occur in the spring and summer; the month of June shows the highest number of flood events. Precipitation records show that heavy rains occurred in the fall as well; however, Iowa soils have a larger capacity to infiltrate water late in the year, and therefore fall floods are less common. In Iowa’s flood history, the events of 1993 and 2008 are on an entirely different scale than the others. These two events stand out from the rest when looking at the extent of the area impacted, recovery costs, precipitation amounts, and stream flows recorded (Bradley 2010; Smith et al., 2013). Figure 2-10 shows the extent of the flooding during the flood events of 1993 and 2008. In both years, flooding impacted the eight IWA watersheds.
Federal disaster declarations give impacted regions access to federal recovery assistance. Current regulation permits two kinds of disaster declarations: emergency declarations and major disaster declarations (Stafford Act). Both are granted at the discretion of the president of the United States, after the governor of the impacted state makes the request. FEMA records on disaster declarations are open to the public and were used to write the text and create the figures below.

- FEMA records show 952 flood-related disaster declarations (FRDD) in Iowa between 1988 and 2016. Of these, 951 were reported for Iowa counties (see Figure 2-11) and one for the Sac and Fox Tribe of the Mississippi in Iowa. All the FRDD in Iowa have been major disaster declarations, except for the 99 related to Hurricane Katrina evacuation (see Table 2-1), which were classified as emergency disaster declarations.
In the last 30 years, every county in Iowa has experienced sufficiently large and severe flood events to warrant a presidential disaster declaration. The number of FRDDs for each Iowa county from 1988–2016 is shown in Figure 2-11.

The eastern half of the state has received more FRDDs than the western part. In addition, most counties in Northeast Iowa have received at least 10 FRDDs in the last three decades. The two counties with the lowest and highest number of FRDDs are O’Brien (4) and Clayton (17), respectively.

Since 1988, the longest period with no FRDDs in Iowa was two years, which can be seen in Figure 2-12. The years with the highest number of FRDDs were 1993, 2005, and 2008. Remarkably, the number of FRDDs in 1993 is higher than the number of counties in Iowa. In that year, 15 counties received two FRDDs, one in late April and the second in early July (Buchanan, Butler, Des Moines, Linn, Black Hawk, Muscatine, Benton, Cedar, Louisa, Tama, Webster, Floyd, Mitchell, Kossuth, and Scott counties).

Table 2-1: FEMA disaster declarations in Iowa Counties (1988–2016). Data source: https://www.fema.gov/
Figure 2-11: Number of flood-related federally declared disasters in Iowa counties (1988–2016). Data source: https://www.fema.gov/.
v. Droughts

Like floods, droughts are a recurrent phenomenon and part of the Earth’s climate. Droughts are characterized by periods with precipitation deficits; depending on their severity, these can also include very low streamflow, as well as reduced soil moisture and groundwater levels.

Unlike floods, droughts tend to progress slowly, and their onset is not easily identifiable. The extremely dry period of the 1930s (known as the “Dust Bowl”) is still considered the unsurpassable benchmark against which all other droughts will be measured. In Iowa’s recent history, both 1988 and 2012 stand out as drought years. Overall, comparisons of these two droughts reveal some similarities. In 1988, Iowa had its 4th hottest and 14th driest summer, whereas the 2012 summer was the 14th hottest and 5th driest in the observational record (Harry Hillaker, state climatologist).

Since 1999, several federal agencies and academic institutions partnered to create the U.S. Drought Monitor (USDM, http://droughtmonitor.unl.edu/), which releases a weekly map of drought conditions for the United States. Drought conditions are classified in five categories: Abnormally Dry (D0), Moderate Drought (D1), Severe Drought (D2), Extreme Drought (D3), and Exceptional Drought (D4). The map presented in Figure 2-13 shows the extent of 2012 drought in Iowa using data generated by the USDM.

Figure 2-13. Drought conditions, October 09, 2012 (Source: http://droughtmonitor.unl.edu/).
c. Hydrological Alterations in Iowa and the Iowa Watershed Approach Study Areas

Although the hydrologic conditions presented for the Iowa Watershed Approach study areas illustrate the historical water cycle, the watersheds themselves are not static; historical changes have occurred that have altered the water cycle. In this section, we discuss the hydrological alterations of Iowa’s watersheds.

i. Hydrological Alterations from Agricultural-Related Land Use Changes

The Midwest, with its low-relief, poorly-drained landscape, is one of the most intensively managed areas in the world (Schilling et al., 2008). With European-descendent settlement, most of the land was transformed from low-runoff prairie and forest to higher-runoff farmland (see Figure 2-2 and Figure 2-3). Within Iowa, the land cover changes in the first decades of settlement occurred at an astonishing rate (Wehmeyer et al., 2011). Using land cover information obtained from well-documented studies in 1859, 1875, and 2001, Wehmeyer et al. (2011) estimated that the increase in runoff potential in the first 30 years of settlement represents the majority of predicted change in the 1832 to 2001 study period.

Still, other transformations associated with an agricultural landscape have also impacted runoff potential (see Table 2-2). For example, the introduction of conservation practices in the second half of the 20th century tend to reduce runoff, as suggested by a recent study of an Iowa watershed (Papanicolaou et al., 2015). The Conservation Reserve Program (CRP) originally began in 1950s. The federal government established many programs in the 1970s to remove lands from agricultural production and establish native or alternative permanent vegetative cover; in an effort to reduce erosion and gully formation, government agencies also encouraged practices such as terraces, conservation tillage, and contour cropping. The Farm Bill of 1985 was the first act that officially established the CRP as we know it today; the Farm Bills of 1990, 1996, 2002, and 2008 expanded these activities. The 2014 Farm Bill gradually reduced the CRP cap from 32 million acres to 24 million acres, although the 2018 Farm Bill is expected to increase the CRP cap to 29 million acres. Table 2-2 summarizes the timeline of agriculture-driven land use changes and their impacts on local hydrology.
Table 2-2. Agricultural-Related Alterations and Hydrologic Impacts.

<table>
<thead>
<tr>
<th>Timeline</th>
<th>Land use status, change, and interventions</th>
<th>Hydrologic effect(s)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-1830s</td>
<td>Native vegetation (tallgrass prairies and broad-leaved flowering plants) dominates the landscape</td>
<td>Baseflow dominated flows; slow response to precipitation events</td>
<td>Petersen (2010)</td>
</tr>
<tr>
<td>1830–1980</td>
<td>Continuous increase in agricultural production by replacement of perennial native vegetation with row crops</td>
<td>Elimination of water storage on the land; acceleration of the upland flow; expanded number of streams; increased stream velocity</td>
<td>Jones & Schilling (2011); Knox (2001)</td>
</tr>
<tr>
<td>1820–1930</td>
<td>Wetland drainage, stream channelization (straightening, deepening, relocation) leading to acceleration of the rate of change in channel positioning</td>
<td>Reduction of upland and in-stream water storage, acceleration of stream velocity</td>
<td>Winsor (1975); Thompson (2003); Urban & Rhoads (2003)</td>
</tr>
<tr>
<td>1890–1960</td>
<td>Reduction of natural ponds, potholes, wetlands; development of large-scale artificial drainage system (tile drains)</td>
<td>Decrease of water storage capacity, groundwater level fluctuations, river widening</td>
<td>Burkart (2010); Schottler et al. (2013)</td>
</tr>
<tr>
<td>2000–present</td>
<td>Construction of impoundments and levees in Upper Mississippi Valley</td>
<td>Increased storage upland</td>
<td>Sayre (2010)</td>
</tr>
<tr>
<td>1940–1980</td>
<td>Modernization/intensification of the cropping systems</td>
<td>Increased streamflow, wider streams</td>
<td>Zhang & Schilling (2006); Schottler et al. (2013)</td>
</tr>
<tr>
<td>1970–present</td>
<td>Conservation practices implementation: Conservation Reserve Program (CRP)</td>
<td>Reduction of runoff and flooding</td>
<td>Castle (2010); Schilling (2000);</td>
</tr>
<tr>
<td>Conservation Reserve Enhancement Program (CREP); Wetland Reserve Program (WRP)</td>
<td>increase of upland water storage</td>
<td>Schilling et al. (2008);</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>2001–present</td>
<td>62% of Iowa’s land surface is intensively managed to grow crops (dominated by corn and soybeans up to 63% of total)</td>
<td>About 25% to 50% of precipitation converted to runoff (when tiling is present)</td>
<td>Burkart (2010)</td>
</tr>
</tbody>
</table>

ii. Hydrological Alterations Induced by Climate Change

The U.S. government recently released “The Climate Science Special Report” (Wuebbles et al., 2017), summarizing the state-of-the-art science on climate change and its physical effects. The CSSR writing team is comprised of three coordinating lead authors from the National Science Foundation and U.S. Global Change Research Program, NOAA Earth System Research Laboratory, and NASA Headquarters. In addition, more than 50 experts from federal agencies, departments, and universities are listed as lead authors, review editors, and contributing authors. CSSR is “designed to be an authoritative assessment of the science of climate change, with a focus on the United States, to serve as the foundation for efforts to assess climate-related risks and inform decision-making about responses.” The information below presents text and figures taken from the CSSR that are relevant to the IWA watersheds, Iowa, and the Midwest.

“Heavy rainfall is increasing in intensity and frequency across the United States (see Figure 2-14) and globally and is expected to continue to increase over the next few decades (2021–2050, see Figure 2-15), annual average temperatures are expected to rise by about 2.5°F for the United States, relative to the recent past (average from 1976–2005), under all plausible future climate scenarios.”
Figure 2-14: Observed change in heavy precipitation (the heaviest 1%) between 1958 and 2016. Figure taken from “The Climate Science Special Report” (Easterling et al. 2017) (https://science2017.globalchange.gov/).
Figure 2-15: Projected change in heavy precipitation. Twenty-year return period amount for daily precipitation for mid- (left maps) and late-21st century (right maps). Results are shown for a lower emissions scenario (top maps; RCP4.5) and for a higher emissions scenario (bottom maps, RCP8.5). Figure taken from “The Climate Science Special Report” (Easterling et al. 2017) (https://science2017.globalchange.gov/). RCP stands for Representative Concentration Pathway.

iii. Hydrological Alterations Induced by Urban Development

Although Iowa remains an agricultural state, a growing portion of its population resides in urban areas. The transition from agricultural to urban land uses has a profound impact on local hydrology, increasing the amount of runoff, the speed at which water moves through the landscape, and the magnitude of flood peaks. The factors that contribute to these increases (Meierdiercks et al., 2010) are the increase in the percentage of impervious areas within the drainage catchment and its
location (Mejia et al., 2010), and the more efficient drainage of the landscape associated with the constructed drainage system — the surface, pipe, and roadway channels that add to the natural stream drainage system. Although traditional stormwater management practices aim to reduce increased flood peaks, urban areas have long periods of high flows that can erode stream channels and degrade aquatic habitat.

d. Assessment of Iowa’s Water Quality

i. Iowa Water-Quality History

Prior to European settlement in the 19th century, Iowa was covered with prairies, oak savannahs, wetlands, and forests (see Figure 2-2). Much of the landscape was internally drained, meaning that rainfall and snowmelt drained to small depressional areas, rather than streams. Groundwater-fed streams meandered across the landscape and likely ran shallow and clear, carrying low levels of sediment and nutrients. Rivers easily spilled out into the floodplain after heavy rains, and riverbanks revegetated during drought, reducing streambank erosion.

Over several decades, the native prairie was broken and cultivated for corn, oats, and alfalfa, as well as a few other minor crops. Soil erosion was intense in the first years following a field’s cultivation. From the period of 1880 to 1920, pervious clay pipes drained many of Iowa’s wettest areas. This was most common in the recently-glaciated area of north-central Iowa known as the Des Moines Lobe, shown in Figure 2-1. Many new streams were constructed in ditches to drain water externally to the river network. Many existing streams were straightened to facilitate crop production.

The post-World War II era brought new developments to agriculture. The emergence of chemical fertilizers, soybeans, and continued drainage of the landscape with plastic drainage tiles helped Iowa become a world leader in crop and livestock production.

The loss of the native ecosystems, stream straightening and incision, artificial drainage, and discharges from industries and municipalities degraded water quality. Although the decline in water quality probably subsided in the early 1980s, Iowa’s streams still carry more nutrients and sediment than most people find acceptable.

ii. Water Quality in the Post–Clean Water Act Era

The Federal Water Pollution Control Act of 1948 was the first major U.S. law to address water pollution. Growing public awareness and concern for controlling water pollution led to sweeping amendments in 1972. The amended law became commonly known as the Clean Water Act (CWA). The 1972 Amendments achieved the following: (1) established the basic structure for regulating pollutant discharges into the waters of the United States; (2) gave the EPA the authority to implement pollution control programs, such as setting wastewater standards for industry; (3) maintained existing requirements to set water-quality standards for all contaminants in surface waters; (4) made it unlawful for any person to discharge any pollutant from a point source into
navigable waters, unless a permit was obtained under its provisions; (5) funded the construction of sewage treatment plants under the construction grants program; and (6) recognized the need for planning to address the critical problems posed by non-point source pollution.

After passage of the CWA, construction began on many new wastewater treatment facilities in Iowa, and upgrades were implemented on many existing treatment works. Undoubtedly these efforts improved water quality in several of Iowa’s major interior rivers, in addition to the Missouri and Mississippi rivers on its borders. Improvements in the levels of ammonia, oxygen demand, Kjeldahl (organic) nitrogen, and dissolved oxygen were particularly important. These improvements made river water quality much more suitable for recreation and aquatic life, especially near Iowa’s larger cities. However, the CWA provisions to address non-point source pollution (i.e., pollution from diffuse areas) proved relatively ineffective in reducing levels of nutrients and sediment in Iowa streams. The main CWA program designed to address non-point source pollution was the 319 Grant Program.

The Food Security Act of 1985 (Farm Bill) required farmers participating in most programs administered by the Farm Service Agency (FSA) and the Natural Resources Conservation Service (NRCS) to abide by certain conditions on any highly erodible land owned or farmed, or land considered a wetland. To comply with the highly erodible land conservation and wetland conservation provisions, farmers were required to certify that they would not: (1) produce an agricultural commodity on highly erodible land without a conservation system; (2) plant an agricultural commodity on a converted wetland; and (3) convert a wetland to produce an agricultural commodity. As result of these requirements, sediment levels in Iowa streams declined and water clarity improved (Jones and Schilling, 2011). Phosphorus levels also declined in unison with the improvements in sediment transport and water quality (Wang et al., 2016). However, conservation compliance, as these requirements are known, has not had a similar beneficial effect on stream nitrate levels (Sprague et al., 2011; Jones et al., 2017).

Iowa policy-makers and watershed stakeholders look to the Impaired Waters list, Section 303(d), as a common reference point to gauge statewide water quality. According to Section 303(d) of the CWA, from “time to time” states must submit a list of waters for which effluent limits will not be sufficient to meet all state water-quality standards. The EPA has defined “time to time” to mean April 1 of even numbered years. The failure to meet water-quality standards might be due to an individual pollutant, multiple pollutants, “pollution,” or an unknown cause of impairment. The 303(d) listing process includes waters impaired by point sources and non-point sources of pollution. States must also establish a priority ranking for the listed waters, considering the severity of pollution and uses. In 2016, there were 608 category 5 Iowa waterbodies with 818 impairments. In 2014, there were 571 impaired waterbodies with 754 impairments. Category 5 waterbodies are those where a Total Maximum Daily Load assessment is required. About 58% of Iowa streams are considered “impaired”; 23% are considered “potentially impaired”; and 19% are considered to have “good” water quality. Indicator bacteria (i.e., E. coli) are the most common cause of impairment, causing about half of all such designations. Biological impairments are next, followed
by fish kills. Figure 2-16 lists the main causes. Figure 2-17 shows historical numbers of impaired Iowa waters.

Figure 2-16: Causes of impairments in Iowa’s impaired waters. (Iowa Department of Natural Resources, 2018).

Figure 2-17: Numbers of impaired Iowa waters, 1998–2016. (Iowa Department of Natural Resources, 2018).
e. Web-Based Information Systems of Flood and Water-Quality Data

IIHR—Hydroscience and Engineering and the IFC at the University of Iowa have pioneered the creation of user-friendly, interactive, web-based information systems (WBIS) to communicate environmental information in Iowa and the United States. These two institutions also have expertise in the installation of real-time environmental monitoring systems and currently administer and maintain extensive networks that record flood and water-quality data in Iowa. WBIS displays this information, along with data collected by other federal institutions.

i. The Iowa Flood Information System (IFIS)

The Iowa Flood Information System (IFIS) is a one-stop web-platform to access community-based flood conditions, forecasts, visualizations, inundation maps, and flood-related information, visualizations, and applications. IFIS can be accessed using this URL: http://ifis.iowafloodcenter.org/ifis/. Below is an overview on some of the information available on IFIS.

Floodplain inundation maps

In partnership with the IDNR, the IFC has created statewide floodplain maps that estimate flood hazard extents and depths for every stream in the state of Iowa draining greater than one square mile. The maps depict flood boundaries and depths for eight different annual probabilities of occurrence: 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-%, allowing Iowans to better understand their flood risks and make informed land management decisions. The statewide floodplain maps can be accessed through IFIS or at http://www.iowafloodmaps.org/. Figure 2-18 shows an example of statewide floodplain map data for the community of Bluffton.

Community-based inundation maps

The IFC has also developed online inundation map libraries for more than 20 Iowa communities. These map libraries relate forecasted or observed flow conditions to flood extents and depths. They use detailed computer models that consider small-scale floodplain and channel features, bridges, and dams to better simulate the physics of flowing water. The maps allow a user to “translate” a forecasted river stage at a USGS gauge to flood extents and depths in the community, to better anticipate and respond to immediate flood hazards, and to consider “what-if” scenarios for long-term planning. Community inundation map libraries can be accessed on IFIS. Figure 2-19 shows the inundation map library interface for the city of Decorah.
Figure 2-18. Statewide floodplain map data showing different levels of annual flood risk.

Figure 2-19. Flood inundation map library for the Upper Iowa River in the city of Decorah.
Observed stream conditions

IFIS displays data from more than 400 sensors continuously monitoring Iowa stream conditions in real time, as shown in Figure 2-20. Currently, the USGS collects streamflow data at approximately 200 locations, and the IFC administers and maintains a growing network of more than 250 stream-stage sensors that record stage conditions.

![IFIS map showing stream monitoring locations](image)

Figure 2-20. USGS (green) and Iowa Flood Center (blue) stream-stage monitoring locations displayed in the Iowa Flood Information System (IFIS).

Flood alerts, warnings, and forecasts

IFIS provides flood alerts for stream sensors with stage values higher than the threshold values for the four flood levels defined by National Weather Service (NWS) and the IFC. Different colors represent these four flood stage levels (action, flood, moderate flood, and major flood). The flood forecast products included in IFIS are the NWS six-hour forecast for 48 hours and the NWS seasonal forecast for 90 days. IFIS integrates short-term NWS forecasts into real-time data series and more-info views. The NWS shares a seasonal forecast probability for minor, moderate, and major flooding for a three-month period. The Iowa Flood Center has developed a real-time, high-
performance, computing-based flood forecasting model that provides quantitative stage and discharge forecasts and a five-day flood risk outlook in IFIS for more than 1,500 locations (e.g., communities and stream gauges) in Iowa.

The IFC system complements the operational forecasts issued by the NWS and is based on sound scientific principles of flood genesis and spatial organization. At its core is a continuous rainfall-runoff model based on landscape decomposition into hillslopes and channel links. The input to the system comes from a radar-rainfall algorithm, developed in-house, that maps rainfall every 5 minutes with high spatial resolution.

ii. The Iowa Water-Quality Information System

The Iowa Water-Quality Information System (IWQIS) integrates real-time water-quality data collected by IIHR and the USGS, along with a variety of watershed-related information such as precipitation, stream flow and stage, soil moisture, and land use. IWQIS (https://iwqis.iowawis.org/) provides useful information for researchers, agencies, landowners, and other watershed stakeholders as they study, analyze, and work to better understand the fate and transport of nutrients in Iowa’s waterways. IWQIS also helps Iowa monitor progress toward achieving the goals of the Iowa Nutrient Reduction Strategy. Iowa has the largest concentration of continuous nutrient and water-quality sensors in the United States; as of 2018, the state has a water-quality network comprised of:

- 74 nitrate sensors (14 operated by USGS)
- 27 hydrolabs (pH, SC, DO, temp)
- 26 turbidimeters
- 4 ortho-P sensors
- 4 ISCOs

This network generates data for science and policy-making, facilitates individual BMP performance assessments, and allows Iowans to quantify the nutrient loads leaving the state. Figure 2-21 is a screenshot of IWQIS displaying the WQ network (2022).
iii. The Iowa Watershed Approach Information System (IWAIS)

IIHR and IFC are developing a web-based information system to provide public access to general information and updates on the IWA project, existing and potential BMPs in IWA watersheds, hydrologic and water-quality data collected in the IWA watersheds, and resources to improve flood resiliency. The website can be accessed at: http://iowawatershedapproach.org. Figure 2-22 shows an example view of the IWAIS interface, displaying the number of existing water and sediment control basins within each HUC12 in the Upper Iowa River Watershed.
Figure 2-22. Example IWAIS interface view showing the number of existing water and sediment control basins within each HUC12 in the Upper Iowa Watershed.
3. Upper Iowa Watershed Description

This chapter provides an overview of the current Upper Iowa River Watershed conditions including hydrology, geology, topography, land use, hydrologic/meteorologic instrumentation, as well as a summary of previous floods of record.

a. Hydrology

The Upper Iowa River Watershed as defined by the boundary of eight-digit Hydrologic Unit Code (HUC8) 07060002 is located in North-East Iowa and south-East Minnesota. Upper Iowa River Watershed encompasses approximately 10000 square miles (mi²) and it flows into the Mississippi River at the Iowa and Wisconsin border. The watershed boundary falls within seven counties, however, the majority of the watershed area (78%) lies within Allamakee, Winneshiek, Howard and Mitchell Counties.

Figure 3-1. The Upper Iowa River Watershed (HUC8 07060002).

Over the last century annual precipitation in the watershed has varied between 19 and 45 inches (Figure 3-3). Average annual precipitation shows little spatial variability around the 35 inches value (Figure 3-2). About 30% of the annual precipitation is transformed into streamflow (Figure 3-4) and approximately 70% of the annual flow comes in the form of baseflow (Figure 3-5).
Figure 3-2. Average annual precipitation (inches). Estimates are based on the 30-year annual average (1981-2010).

Figure 3-3. Bar graph of annual precipitation.
b. Geology and Soils

The Upper Iowa River Watershed is located within two landform regions, the Iowan Surface and Paleozoic Plateau (Figure 2-1). The characteristics of each landform region have an influence on the rainfall-runoff potential and hydrologic properties of the watershed.

The Iowan Surface encompasses much of northeast Iowa and is an area that was subjected to intense cold between 21,000 to 16,500 years ago during the last glacial advance into Iowa. The close proximity to the Des Moines Lobe ice margin resulted in tundra and permafrost conditions,
and as a result wind and water action significantly eroded the landscape. Characteristic features include gently rolling topography, common glacial ‘erratics’ (rocks and boulders not native to Iowa that have been transported by glaciers), and loess-mantled paha (northwest to southeast trending uneroded upland remnants of the former landscape). Glacial materials at the surface consist of poorly consolidated glacial deposits with the potential for extensive local sand bodies. In areas where the depth to bedrock is shallow, these materials provide limited protection from surface water infiltration into bedrock.

In contrast, the landscape of the Paleozoic Plateau is dominated by shallow bedrock. Steep sided deeply entrenched valleys, abundant rock exposures, and common karst features characterize this landform region. The unconsolidated materials consist of relatively thin glacial deposits with a loess (wind-blown silt) mantle. Carbonate bedrock (limestone and dolomite) is susceptible to forming karst features, and numerous caves, springs, and sinkholes are identified throughout the watershed. Bedrock in the Upper Iowa River Watershed is dominated by sandstones and carbonates that are less prone to karst formation in the eastern portion of the watershed and carbonate and shales in the west. The differences in bedrock competence are further indicated by the sinkhole distribution.

Soils are classified into four Hydrologic Soil Groups (HSG) by the Natural Resources Conservation Service (NRCS) based on the soil’s runoff potential. The four HSG’s are A, B, C, and D, where A-type soils have the lowest runoff potential and D-type have the highest. In addition, there are dual code soil classes A/D, B/D, and C/D that are assigned to certain wet soils. In the case of these soil groups, even though the soil properties may be favorable to allow infiltration (water passing from the surface into the ground), a shallow groundwater table (within 24 inches of the surface) typically prevents much infiltration from occurring. For example, a B/D soil will have the runoff potential of a B-type soil if the shallow water table were to be drained away, but the higher runoff potential of a D-type soil if it is not. Complete descriptions of the Hydrologic Soil Groups can be found in the USDA-NRCS National Engineering Handbook, Part 630- Hydrology, Chapter 7.
Figure 3-6. Distribution of Hydrologic Soil Groups in the Upper Iowa River Watershed. Hydrologic Soil Groups reflect the degree of runoff potential a particular soil has, with Type A representing the lowest runoff potential and Type D representing the highest runoff potential.

The soil distribution of the Upper Iowa River Watershed per digital soils data (SSURGO) available from the USDA-NRCS Web Soil Survey (WWS) is shown in Figure 3-6. Viewing the soil distribution at this map scale is difficult, but the map does illustrate how much soils vary in space and the noticeable difference in soil types of the Iowan Surface compared to the Paleozoic Plateau landform region. Table 3-1 shows the approximate percentages by area of each HSG for the Upper Iowa River Watershed within the state of Iowa only. B type soils (56.9%), which have a moderate runoff potential when saturated, comprise the largest component of the Iowan Surface landform region. Significant percentages of B/D (19.9%), C (7.7%), and D (12.5%) type soils are also present. These areas range from having a moderate to high runoff potential. The remaining classes each comprise 1% or less of the total. In contrast, soils on the Paleozoic Plateau are dominated by B type (80.0%), with lesser components of B/D (5.4%), C (4.1%), and D (7.7%). The others each amount to two percent or less.

Table 3-1. Approximate Hydrologic Soil Group Percentages by Area for the Upper Iowa River Watershed.

<table>
<thead>
<tr>
<th>Hydrologic Soil Group</th>
<th>Iowan Surface Approximate %</th>
<th>Paleozoic Plateau Approximate %</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.3</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Upper Iowa Project Evaluation | 36
<table>
<thead>
<tr>
<th>A/D</th>
<th>0.3</th>
<th><0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>56.9</td>
<td>80.0</td>
</tr>
<tr>
<td>B/D</td>
<td>19.9</td>
<td>5.4</td>
</tr>
<tr>
<td>C</td>
<td>7.7</td>
<td>4.1</td>
</tr>
<tr>
<td>C/D</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>D</td>
<td>12.5</td>
<td>7.7</td>
</tr>
</tbody>
</table>

c. Topography

Figure 3-7 shows the topography of the Upper Iowa River Watershed. Elevations range from approximately 1500 feet above sea level to 600 feet above sea level in the downstream portion of the watershed.

![Topography of the Upper Iowa River Watershed](image)

Figure 3-7. Topography of the Upper Iowa River Watershed.

d. Land Use

Land use in the Upper Iowa River Watershed is predominantly agricultural, dominated by cultivated crops (corn/soybeans) at approximately 44.3% of the acreage, followed by grass/pasture at approximately 25.7%. The remaining acreage in the watershed is about 20.5% forest, 5% developed land, 3.7% crops other than corn/soy and 0.4% open water and/or wetlands, per the 2017 USDA/NASS Cropland Data Layer.
e. BMP Mapping

Identifying existing conservation practices within a watershed can serve as a benchmark for future implementation and provide information where more practices are needed. The Iowa Best Management Practices Mapping project (IBMP) identified existing conservation practices throughout the state of Iowa using data from the 2007 to 2010 timeframe. For the Upper Iowa River watershed the total number of existing practices are 31890 acres of agricultural fields with contour buffer strips, 18833 acres of agricultural fields with strip cropping, 3979 acres of grassed waterways, 4811 terraces, 1299 pond dams, and 1091 water and sediment control basins. The spatial distribution of the conservation practices within the watershed is shown in Figure 3-9. WASCOBs, strip cropping and pond dams are most prominent while grassed waterways are least prominent near the outlet of the watershed. Terraces and contour buffer strips are most prominent in the central portion of the watershed (Figure 3-9).

Figure 3-8. Land use composition in the Upper Iowa River Watershed, per the 2017 USDA Cropland Data Layer.
Figure 3-9. Iowa Best Management Practices Mapping Project.
f. Potential BMPs - Agricultural Conservation Planning Framework

Development of an effective watershed planning document will require identification of potential conservation practices and viable locations to implement them. One cutting-edge tool available for practical conservation planning is the Agricultural Conservation Planning Framework (ACPF) watershed planning toolbox, developed by Mark Tomer and his research team at the USDA-ARS in Ames, Iowa (Tomer et al., 2013). ACPF is a watershed approach to conservation planning facilitated with a set of semi-automated tools within ArcGIS software. Freely available and prepackaged GIS data can be used for terrain analyses to determine which fields within the watershed are most prone to runoff into streams. Users can apply the ACPF toolbox to identify locations where field-scale and edge-of-field practices could be installed based on general design criteria. These practices include controlled drainage, surface intake filters or restored wetlands, grassed waterways, contour buffer strips, WASCOBs, nutrient removal wetlands (NRWs), or edge-of-field bioreactors (North Central Region Water Network 2018). Using the ACPF toolbox, IFC has generated potential BMPs for each of the HUC 12s in the Upper Iowa River Watershed. Potential BMPs aggregations based on HUC 12 area are presented in Figure 3-10.

![Grassed Waterways (Acres)](image1)

![Number of Pond Dams](image2)

![Number of WASCOBs](image3)

Figure 3-10. Potential BMPs. Ponds Dams represent nutrient removal wetlands.

g. Instrumentation/Data Records
The Upper Iowa River Watershed has instrumentation installed to collect and record stream stage, discharge, and precipitation measurements. There are seven United States Geological Survey (USGS) operated stage & discharge gages and one Iowa Flood Center stream stage sensor located within the watershed.

![Map of the Upper Iowa River Watershed with gage locations marked](image)

Figure 3-11. Stage/discharge gages in the Upper Iowa River Watershed.

g. Floods of Record

Five large flood events (discharge greater than 20,000 cfs) are recorded at the USGS Upper Iowa River gaging station near Dorchester, IA since 1931. Four of these events have occurred since 1993: August 24, 2016 with 38,000 cfs, June 9, 2008 with 31,200 cfs, June 23, 2013 with 25,500 cfs, and August 17, 1993 with 22,000 cfs (Table 3-2). These events also were large flood events upstream recorded at the USGS Upper Iowa River gaging station at Decorah and at Bluffton. In addition to the four large flood events, there have been two historic flood events. The first recorded near Dorchester in May 31, 1941 with 30,400 cfs and the second recorded at Decorah with 20,200 cfs (Table 3-2). Ultimately, the discharge that is observed near Dorchester continues downstream to the Mississippi River.

Table 3-2. Discharge from the Five Largest Flooding Events at USGS Gaging Stations in the Upper Iowa River Watershed including; the Upper Iowa River at Bluffton, Upper Iowa River at Decorah and the Upper Iowa River near Dorchester.

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
<th>Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Iowa River at Bluffton</td>
<td>6/9/2008</td>
<td>16,600 cfs</td>
</tr>
<tr>
<td>USGS 05387440 (2003-Present)</td>
<td>8/24/2016</td>
<td>13,800 cfs</td>
</tr>
<tr>
<td></td>
<td>6/23/2013</td>
<td>12,000 cfs</td>
</tr>
<tr>
<td></td>
<td>8/22/2007</td>
<td>8,440 cfs</td>
</tr>
<tr>
<td></td>
<td>7/25/2005</td>
<td>7,820 cfs</td>
</tr>
<tr>
<td></td>
<td>Date</td>
<td>Flow 1</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>USGS 05387500 (1952-Present)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USGS 05388250 (1939-1941, 1976-Present)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Water Quality Analysis

a. Data Availability
This analysis aimed to estimate riverine nutrient loads for the Upper Iowa River watershed. The primary nutrients of concern traveling through Iowa’s rivers are nitrate and phosphorus. Phosphorus is comprised of two forms, a dissolved form called orthophosphate (OP) and a suspended form called particulate phosphorus (Part P). The combination of these two is called total phosphorus (TP). Reducing these nutrients in Iowa waters is a central goal of the Iowa Watershed Approach and water quality improvement efforts more generally.

i. Data Requirements
Historical nutrient data are needed to estimate riverine loads for any site of interest, so identifying which locations along the Upper Iowa contained previously collected nitrate and TP data was necessary. Several programs monitor nutrient data every month by collecting grab samples that are brought to a laboratory for analysis. This protocol has created a record of discrete data points of nitrate and TP concentrations. It has become possible in the past decade to deploy in-situ sensors along a river that continuously measure nitrate. These sensors have greatly enhanced the discrete nitrate data by creating a more complete record for recent years. Measuring TP on-site is currently infeasible, and grab samples remain the only way to measure TP concentrations directly. However, recent research has demonstrated that turbidity is an effective surrogate for Part P. Turbidity is a quantitative indicator of water clarity and can be measured continuously on-site. Continuous turbidity values can then be used to predict Part P concentrations. Therefore, turbidity is another helpful analyte to identify when evaluating data availability.

Finally, measurements of the river’s flow are also needed to estimate nutrient loads. The United States Geological Survey (USGS) operates numerous gauges that measure streamflow throughout Iowa. A USGS gauge needs to be located near a site where nutrient data are collected to assess that site’s loads accurately. The potential timeframe for nutrient analysis is determined by the historical record of nutrient concentrations and streamflow measurements. It is possible to estimate loads when these two data records are both available. Streamflow can also act as a useful surrogate. Since it is measured routinely by the USGS, it can often be a valuable tool for estimating nutrient concentrations. The USGS typically calculates mean daily streamflow values, making it possible to estimate nutrient loads at a daily timescale.

ii. Sources of Data
The headwaters of the Upper Iowa watershed originate in Minnesota, just above the state border in northeastern Iowa. The watershed extends approximately 75 miles west from the Upper Iowa’s outlet into the Mississippi River. The most downstream location along the Upper Iowa that contains significant nutrient data is found just south of the town of Dorchester, IA. This site has long been a part of the Iowa Department of Natural Resource’s (IDNR) ambient monitoring program. Nitrate, TP, and OP are measured every month here.
The Dorchester site contains nearly 80% of the Upper Iowa’s total watershed, and all major tributaries enter the Upper Iowa upstream of its location. The USGS has also maintained a stream gauge here—with streamflow measurements dating back to 1938. This site is an obvious choice for any nutrient analyses conducted along the Upper Iowa, as it has substantial historical data and encompasses the vast majority of the watershed. The exact location of the Dorchester site within the Upper Iowa watershed is shown below; the pink pin in Figure 4-1 corresponds to IDNR site 10570001 and USGS streamflow gauge 05388250.

![Figure 4-1. Dorchester, IA data collection site.](image)

The IDNR began monitoring this site monthly in 1998, and sampling continues to the present day. In 2017, nitrate and turbidity sensors were deployed by the Iowa Water Quality Information System (IWQIS) at this same location. These deployments were done in conjunction with the Iowa Watershed Approach and resulted in more continuous records of these analytes in recent years. Figure 4-2 summarizes the number of days in each year containing nitrate, OP, Part P, and turbidity measurements. This combination of data sources results in a robust nutrient dataset, enabling the estimation of nitrate and phosphorus loads from 1998 to the present.
In preparation for daily load estimates, the nutrient data were assembled from these three sources: the IDNR, the USGS, and IWQIS. Any further inquiries about data availability at this location may be directed toward Elliot Anderson (elliot-anderson@uiowa.edu) at the University of Iowa.

b. Methods
Because there are numerous days on which nutrient data is unavailable, it is necessary to estimate nitrate and TP concentrations on these days without data. If nutrient concentrations can be accurately estimated over the period of available data, it is possible to calculate nutrient loads comprehensively. In the case of the Upper Iowa, the goal was to estimate daily concentrations from 1998 to 2021—a timeframe commensurate with data availability and the Iowa Watershed Approach schedule.

The simplest way to estimate the missing data is to interpolate between actual measurements. Studies have indicated that this may be sufficient for nitrate in some Iowa streams. However, uncertainty associated with TP concentrations is too great for interpolation to be viable. Surrogacy-based models are more commonly used when interpolation is not practical. Turbidity is useful as a surrogate to estimate Part P, but there are also many days on which turbidity data is unavailable. Several models have been developed that use flow and seasonal factors to predict water-borne constituents. These models are almost always possible to implement, as the USGS constantly measures streamflow, and seasonal metrics are always present.

Over the past several years, the industry standard has moved to the Weighted Regression on Time Discharge and Season (WRTDS) model. These models couple historical water quality measurements with daily flow values to produce estimated daily concentrations over the entire streamflow period. WRTDS uses several flow-related metrics and seasonal variables to predict
these concentrations. Recently, the WRTDS model framework has been supplemented with a Kalman filter. This Kalman filter adjusts the concentrations of the original WRTDS model based on their proximity to the measured values. This model version is referred to as WRTDSK and has been made available by the USGS as an open-source R package. The WRTDSK model produces the best possible estimates of loads. Documentation for the WRTDSK package is available on the following GitHub page (https://usgs-r.github.io/EGRET/articles/WRTDSK.html).

Three separate models were constructed for the Upper Iowa basin. Nitrate, OP, and Part P were each modeled from 1998 to 2021. The daily flow values utilized by these models are shown in Figure 4-3.

Figure 4-3. Daily flow values for the Upper Iowa River at Dorchester, IA.

i. Nitrate

The WRTDSK nitrate model was successfully implemented, and no issues were found with the model’s residuals. While it is possible to simply interpolate nitrate concentrations, the WRTDSK model moderately improved upon linear interpolation. Therefore, the values produced by the WRTDSK model are the most accurate estimates currently available. Overall, the model performance was suitable.
Table 4-1. WRTDSK model performance metrics.

<table>
<thead>
<tr>
<th>River</th>
<th>Type</th>
<th>R2</th>
<th>RMSE</th>
<th>R2.ln</th>
<th>RMSE.ln</th>
<th>FluxBias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Iowa</td>
<td>Nitrate</td>
<td>0.49</td>
<td>1.621</td>
<td>0.34</td>
<td>0.672</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>OP</td>
<td>0.25</td>
<td>0.080</td>
<td>0.43</td>
<td>0.729</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>PartP</td>
<td>-0.14</td>
<td>0.290</td>
<td>0.40</td>
<td>0.778</td>
<td>0.20</td>
</tr>
</tbody>
</table>

The observed (black dots) and estimated (solid line) concentrations are shown in Figure 4-4. The nitrate concentrations ranged from 0.01 to 12 mg/L. The predicted concentrations largely remained within the range of observed values and were consistently below 10.0 mg/L. Many more observed values have been available in recent years due to sensor deployment. All model performance metrics are shown in Table 4-1.

Figure 4-4. WRTDSK nitrate model results.

ii. Orthophosphate

The WRTDSK OP model was successfully implemented. In many cases, OP can be difficult to predict based on flow, as it is a dissolved constituent. However, this model performed well. The model concentrations typically remained near 0.1 mg/L, and occasionally, values would extend to 1 mg/L.

Figure 4-5 contains an example of the Kalman filter being applied to the OP estimates. The black lines show the original WRTDS concentrations, and the red points are the observed samples—the exact OP measurements at the Dorchester site. The green lines show the new concentrations made by implementing the Kalman filter. The closer the concentrations are to the actual measurements, the more they get adjusted to match these measurements.
iii. Particulate Phosphorus

The WRTDSK model was similarly implemented for Part P. Part P is typically driven by erosion. Much of the Part P found in Iowa streams is sorbed to sediment originating from fields or streambanks. Because runoff can trigger this erosion, flow-based models often perform well for Part P, and the WRTDSK model proved adequate. Still, because turbidity data were available, its potential use as a surrogate for Part P was also investigated.

Figure 4-6 plots the relationship between the log-transformed values of Part P and turbidity collected at the Dorchester site. The literature generally suggests that a linear model for the log-transformed variables is ideal. This relationship may also be referred to as the power regression model since the untransformed equation follows a power-law framework.
Figure 4-6. Turbidity-based surrogate model for Part P.

It has been observed that numerous models have issues with heteroskedasticity on the transformed data. This is seen in Figure 4-6, where the variance of residuals is more prominent for smaller turbidity values than for larger ones. This issue was addressed by splitting the model using piecewise regression around a breakpoint of 50 NTU. The resulting surrogacy model contained two equations for predicting Part P—one for turbidity values less than 50 NTU and one for values above this threshold. Using two equations resolved issues with heteroskedasticity, as the residual variance largely remained constant above and below this threshold.

Part P concentrations were then predicted on any days where turbidity data were available, and these estimates were given higher priority over the WRTDSK model. The surrogacy-based concentrations were used to calculate loads instead of the WRTDSK concentrations when turbidity data were present. This observed value was used as the ultimate Part P concentration on any days that contained observed Part P data.

Finally, the OP and Part P concentrations were summed to produce an overall TP concentration. This final TP value was used to estimate the timeseries of phosphorus loads from 1998 to 2021.

iv. Trend Detection

An additional aspect of this project was determining the presence of any temporal trends in the nutrient data. A trend analysis could be conducted once the concentrations and loads were assembled. Significant effort has gone into reducing nutrient loads in the Upper Iowa, so it is natural to investigate any potential trends that may be present.
Two statistical tests were performed on the loads and concentrations for both nitrate and TP for the entire 1998 – 2021 period. The first was the Mann-Kendall Trend test, a standard tool for evaluating monotonic trends. This test determines if the timeseries data are consistently increasing or decreasing. This test can be performed on data that are not normally distributed, which is often the case for riverine loads. The second test evaluated Spearman’s rank correlation coefficient. This test calculated the correlation between the ranks of the analyte values and the ranks of the dates. This test also investigates if a monotonic relationship is present between two variables, in this case, a nutrient metric and a date. Data may also be non-normal when calculating the Spearman correlation coefficient.

As a final step, the daily values were aggregated for every year. For concentrations, this involved taking the average of all the daily concentrations within a given year. For loads, this involved summing the daily fluxes. Loads were further converted to yields by dividing their annual values by the Upper Iowa’s watershed area. A similar process was conducted using the daily flow values. The daily flows were likewise assembled on a yearly basis into an annual volume of water and a water yield. The yearly timeseries benefit from removing any seasonal effects in the daily values. Their plots are also more intuitive than the daily values due to the reduced number of data points. Both the Mann-Kendall test and Spearman Rank Test were run on the yearly values as well.

c. Results

A summary of the descriptive statistics for each pertinent variable is shown below. The flows are the daily mean streamflow values measured by the USGS. TP is the phosphorus concentration estimated using WRTDSK and turbidity-based surrogacy models. These concentrations were then coupled with the daily flows to calculate phosphorus loads (P Load). Nitrate concentrations were estimated using WRTDSK models, and nitrate loads (N Load) were similarly calculated using these concentrations and the daily flow values.

Table 4-2. Descriptive statistics for the Upper Iowa flows and nutrients.
i. Nitrate Estimates

Figure 4-7 contains the final daily nitrate concentrations. These concentrations generally appear to be normally distributed. The values also appear relatively constant over the entire record, though there may be a decrease within the past five years. Seasonality is present throughout the timeseries, with higher concentrations occurring during the summer and lower ones in the winter. The highest single nitrate concentration was 13.3 mg/L; the lowest concentrations of 0.05 mg/L occurred in numerous instances throughout the years.

![Upper Iowa Nitrate Daily Timeseries](image)

Figure 4-7. Daily nitrate concentrations.

Average yearly concentrations are shown in Figure 4-8. These averages are simply the arithmetic mean of all daily concentrations within a given year. The annual averages range from about 3.0 to 8.0 mg/L, with a typical year near 5.3 mg/L. The decline in recent concentrations is more evident when observing the yearly data points. The total flows for each year are shown on the secondary axis. Typical flows for the Upper Iowa are on the order of hundreds of billions of gallons per year. The wettest years occurred in 2016 and 2019.
Figure 4-8. Average annual nitrate concentrations.

Figure 4-9 contains the boxplots for nitrate concentrations separated by month. The boxplots show the variation of concentrations within each month, along with the median, interquartile range, and potential outliers. The monthly distributions seem mostly symmetric. The highest medians occur during the May and June months, while the lowest concentrations occur in August, September, and October.
Figure 4-9. Boxplots of monthly nitrate concentrations.

Figure 4-10 shows the daily nitrate loads. These were calculated by multiplying the daily concentrations by their corresponding mean flow values. Flows values are generally positively skewed, often following a lognormal distribution. Due to the skewness of the flows, the nitrate loads also tend to be positively skewed. The highest loads tend to be near 0.5 million lbs of nitrate per day, with the highest daily load greater than 1.5 million lbs. There were also periods of low flow that resulted in minimal nitrate loads.

Figure 4-10. Daily nitrate loads.

Figure 4-11 shows the yearly nitrate and water yields. These are calculated by dividing the summation of daily loads within a year by the tributary area of the Dorchester site, which is 770 square miles. The yearly yields varied considerably from 4.0 to 44 lbs/ac, with a mean near 20 lbs/ac. Water yields correlate with nitrate yields, and higher water yields result in larger nitrate loads due to the increased water volume.
ii. Phosphorus Estimates

Figure 4-12 shows the daily TP concentrations. The TP concentrations are much more positively skewed than the nitrate concentrations. There is no clear trend in the daily TP concentrations, and values range between 0.01 to 7.2 mg/L. Seasonality may also be present, with higher concentrations occurring in the spring and early summer.

Figure 4-13 shows the annual average TP concentrations and the annual water volume. The average concentrations appear to be marginally decreasing across the timeframe. The typical
yearly concentrations were generally near 0.2 mg/L, and these concentrations generally were not related to the annual water volumes of the Upper Iowa.

![Upper Iowa TP Annual Average Concentrations](image)

Figure 4-13. Annual average TP concentrations.

Similarly, the concentrations were separated by month for TP. Boxplots of these monthly concentrations are shown in Figure 4-14. These boxplots are quite positively skewed, and each month contains many potential outliers. The medians varied slightly by month, with the highest values occurring during the spring and early summer months. The medians mainly were near 0.2 mg/L.

![Upper Iowa TP Monthly Boxplots: 1998 - 2021](image)
Figure 4-14. Boxplots of monthly TP concentrations.

Figure 4-15 displays the daily TP loads for the Upper Iowa. These loads are very positively skewed. High TP concentrations tend to occur on days with high flows, i.e., streamflow is correlated with TP. Since these two factors tend to occur coincidently, the resulting loads can become extremely skewed. The maximum loads were near 850,000 lbs per day.

![Upper Iowa TP Daily Timeseries](image)

Figure 4-15. Daily TP loads.

Figure 4-16 shows the annual TP yields and water yields. There was considerable variation among yearly yields, with the lowest value near 0.2 lbs/ac and the highest value near 5.5 lbs/ac. These yearly yields were closely linked to the annual water yields, and higher water yields are directly related to higher TP yields. The yields for TP are approximately ten times smaller than those of nitrate.
iii. Trend Detection

The Mann-Kendall trend test and the Spearman’s rank correlation coefficient were conducted on the daily concentrations and loads and the annual concentrations and loads. These tests were done for both nitrate and TP. The tests were also performed for the daily and yearly flow timeseries. Table 4-3 summarizes the findings for each of the tests. The p-values relate to the statistical significance of each test. Values lower than 0.05 indicate that a statistically significant trend is present. The slope indicates the change in value per unit (either day or year) found by the Mann-Kendall test.

Daily concentrations were found to be increasing for nitrate but decreasing for TP. Daily loads increased for nitrate, while no statistically significant trend was present for daily TP loads. Daily flows were also increasing, so this likely offset the decrease in TP concentrations, resulting in no appreciable trend for TP loads. No trends were present for the annual nitrate or flow series, but the annual TP concentrations decreased. There was perfect agreement between the Mann-Kendall and Spearman tests. Both produced the same results, suggesting the trend detection test results are viable.
Table 4-3. Trend analysis results.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Property</th>
<th>Mann-Kendall</th>
<th>Spearman</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>trend</td>
<td>p-value</td>
</tr>
<tr>
<td>Nitrate</td>
<td>Daily Concentrations</td>
<td>increasing</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Daily Loads</td>
<td>increasing</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Annual Concentrations</td>
<td>no trend</td>
<td>0.097</td>
</tr>
<tr>
<td></td>
<td>Annual Loads</td>
<td>no trend</td>
<td>0.097</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>Daily Concentrations</td>
<td>decreasing</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Daily Loads</td>
<td>no trend</td>
<td>0.075</td>
</tr>
<tr>
<td></td>
<td>Annual Concentrations</td>
<td>decreasing</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>Annual Loads</td>
<td>no trend</td>
<td>0.823</td>
</tr>
<tr>
<td>Flow</td>
<td>Daily Flows</td>
<td>increasing</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Annual Flows</td>
<td>no trend</td>
<td>0.130</td>
</tr>
</tbody>
</table>

d. Conclusions

The historical nutrient data at Dorchester, IA, made it possible to estimate nitrate and TP loads for the Upper Iowa River. The data at the Dorchester site was excellent, containing a solid record of nutrient data spanning over 20 years. The IDNR has sampled the site every month since 1998, and the USGS operates a co-located gauge that has monitored streamflow since 1938. In recent years, IWQIS has installed nitrate sensors and turbidimeters that can continuously monitor these analytes at this location. Data from these three sources were assembled for this analysis.

Daily nutrient loads were estimated from 1998 to 2021. WRTDSK models were successfully implemented for nitrate, OP, and Part P. The Part P models were further supplemented with a turbidity-based surrogacy model. The final Part P concentrations were added to the OP concentrations that form TP concentrations. The estimated nitrate and TP concentrations were then coupled with daily mean flows monitored by the USGS to create daily nutrient loads.

The nitrate concentrations tended to be normally distributed, while the TP concentrations were more positively skewed. Nitrate concentrations ranged from 0.05 mg/L and 13.3 mg/L with an average of 5.3 mg/L. TP concentrations ranged from 0.01 mg/L and 7.2 mg/L with an average of 0.18 mg/L. Yearly nitrate yields ranged from 4.0 lbs/ac to 44 lbs/ac, with an average of 20.4 lbs/ac. Yearly TP yields ranged from 0.2 lbs/ac to 5.5 lbs/ac, with an average of 1.4 lbs /ac. Previous studies have estimated Iowa’s statewide yields for nitrate and TP across similar timeframes as 16 lbs/ac and 1.8 lbs/ac, respectively. The nitrate yields from the Upper Iowa are greater than the rest of Iowa, while the TP yields are lower. Annual water yields strongly correlated with annual nutrient yields. Both the Mann-Kendall and Spearman trend detection tests indicated that daily concentrations were increasing for nitrate but decreasing for TP. Daily nitrate loads were likewise increasing, but no trend was present for daily TP loads. Since mean daily streamflow was also increasing, the increased flow in the Upper Iowa likely offset any reductions seen in its TP concentrations.
5. Model Development

The modeling activities described in this report were performed using the Generic Hydrologic Overland-Subsurface Toolkit (GHOST), a physically-based integrated model developed at IIHR – Hydroscience and Engineering to run decades-long simulations for entire Iowa watersheds. The model represents hydrologic processes using physical laws and empirical correlations parameterized with actual watershed characteristics, such as soil types, land use, topography, and hydrologic connections (Politano, 2019). This allows it to predict streamflow during normal and extreme rainfall and snowmelt. The model incorporates best management practices (BMPs) to enable a comparison of streamflow and watershed characteristics before and after the construction of IWA projects.

a. Hydrologic Model Description

GHOST is based on MM-PIHM (Multi-Modular Penn State Integrated Hydrologic Model), an open-source code developed by Qu and Duffy (2007) that specializes in coupling surface and subsurface flows. Modifications of the original model in GHOST include: “1) capturing main hydrological processes to predict observed multi-year hydrographs and annual water budgets; 2) increasing accuracy using a Voronoi-based discretization; and 3) improving computational efficiency through multithread parallel computing” (Politano, 2019). In addition, Razmand (2020) added tile drainage to GHOST to capture this important component of Iowa’s hydrology.

Watersheds in GHOST are discretized horizontally by a mesh of Voronoi (a.k.a., Thiessen) polygons, which improve the accuracy of gradient computations and calculated fluxes between these elements. Vertically, the elements are defined by three different zones: the surface zone, as well as two subsurface zones (unsaturated and saturated soil), separated by a dynamic water table (Figure 5-1) (Politano, 2019).
GHOST computes all the major components of the water cycle, as shown by Figure 5-2. Rain (or snow) is intercepted by the vegetation canopy before it reaches the surface. Water on the surface either evaporates, runs off, or infiltrates the soil. Infiltrated water transpires, evaporates, exfiltrates, or recharges the groundwater, which can then either be evaporated or discharged to streams through natural movement or tile drainage. GHOST calculates surface flow using the two-dimensional diffusive wave approximation of the Saint Venant equations, where water depth is computed using a one-dimensional approximation to capture the channel geometry. Flow in the unsaturated zone is assumed to be primarily vertical and is governed by the Darcy equation, while groundwater (the saturated zone) moves horizontally via the non-linear Bousinnesq equation. For a full documentation of GHOST’s mathematical model, please refer to Politano (2019).

Figure 5-2. The hydrologic cycle calculated by GHOST (Politano, 2019).

b. Upper Iowa Model Construction

The GHOST model for the Upper Iowa River Watershed consists of a computational mesh of Voronoi elements and a network of connected linear stream segments, shown in Figure 5-3. Modelers delineated the stream network using a 10-meter resolution digital elevation model (DEM) procured from the National Elevation Dataset (NED). Within each element, water fluxes
are calculated and communicated to neighboring elements and stream segments. Each element contains information about its location, minimum and maximum elevation, area, soil, and land use type. The stream network is detailed by each segment’s location, length, minimum and maximum elevation, and stream order, with corresponding parameters including depth, width, roughness, and connection to the surface and subsurface of its neighboring elements.

Figure 5-3. The Voronoi mesh and stream network used in the Upper Iowa GHOST model.

The model for Upper Iowa River Watershed contains 7944 elements, with an average size of 0.34 km² (83 acres), the largest at 1.07 km² (263 acres), and the smallest only 0.09 km² (22 acres). There are 2885 river segments with a total length of 1224 km (763 miles) and average, maximum, and minimum lengths of 420 m, 1770 m, and 60 m, respectively. Many segment lengths were
increased by a multiplier to account for real-life sinuosity that was not captured in the coarsely-resolved stream network.

HUC12 sub-watersheds within the IWA focus area were constructed with a finer resolution mesh and denser stream network to enhance the model’s performance surrounding IWA projects. This can be seen in Figure 5-4. Elements within these HUC12s were smaller than the rest of the watershed, with an average area of just 0.16 km² (39 acres); the largest was only 0.51 km² (125 acres).

GHOST assigns each computational element to one of four land use types, based on the type that is predominant in that element. Different land use types result in different characteristics within the model, including evapotranspiration parameters such as leaf area index, vegetation height, root depth, and crop coefficient, as well as albedo, surface roughness, and surface water storage capabilities. Landcover data were collected from the USDA 2018 Crop Data Layer (USDA, 2021). Though elements vary slightly in area, 61% are assigned to row crop, 20% to forest, 19% to grass/pasture, and less than 1% to urban, as shown in Figure 5-5.
The mesh within IWA focus areas was constructed with a finer resolution than the rest of the watershed.

GHOST requires five different weather parameters as forcing data: precipitation, temperature, wind speed, surface pressure, and potential evapotranspiration. Modelers obtained meteorological data from the North American Land Data Assimilation System Phase 2 (NLDAS-2). The model used the 37 NLDAS pixels shown in Figure 5-5.

Three USGS streamflow gauges on the Upper Iowa River were used to calibrate the GHOST model (all shown in Figure 5-6): gauge 05387440 at Bluffton, gauge 05387500 at Decorah, and gauge 05388250 at Dorchester. The next section describes the process and results of model calibration.
Figure 5-5. GHOST mesh with elements’ land use classifications.
c. Model Calibration

Calibration is the process of adjusting model parameters until simulated results match observed time series as closely as possible, typically stream discharge at a gauging station. Analyses based upon the model can therefore be assumed to reflect reality to a reasonable degree. Researchers performed model calibration for an 18-year period from 2003–2020. Simulated flows were compared to observed flows at the USGS stream-gauge stations 05387440 at Bluffton, 05387500 at Decorah, and 05388250 at Dorchester, as shown in Figure 5-6. The comparison of observed and simulated average daily discharges for all three gauges is shown in Figure 5-7. In general, GHOST did a good job of capturing low-flow periods as well as flood events, albeit with some mismatches inherent in all hydrologic modeling.
We can use several performance metrics to evaluate how well a model matches observed discharges. Based on Moriasi et al., 2007, model simulations can be judged as satisfactory if Nash-Sutcliffe efficiency (NSE) > 0.60, Percent bias (PBIAS) < ±15%, and the coefficient of determination (R^2) > 0.50. The metrics for this model are shown in Table 5-1. While the R^2 and PBIAS values fall within satisfactory ranges, NSE is below the ideal range at Dorchester and Bluffton. This is likely due to overprediction of extreme events, as evident in Figure 5-7. It’s important to note that these values were calculated on daily values over an 18-year period, which is more stringent than common practice.

The Upper Iowa River Watershed displays a monthly pattern typical in Iowa, with the highest runoff depths from March through July and relatively drier conditions during the rest of the year. The model captures this pattern well at all three locations, with slight tendency to overpredict in late spring and underpredict in late summer, as seen in Figure 5-8. Overall, the GHOST model’s performance matched observed average monthly runoff depths closely, with R^2 values of 0.84 for Bluffton, 0.84 for Decorah, and 0.79 for Dorchester.

Researchers compared the annual peak discharge for each year to assess the model’s ability to capture the largest flood events.

Figure 5-9 plots each annual peak with observed discharge on the x-axis and simulated on the y-axis to show how closely the two values match — that is, how close each point is to the one-to-one line. Smaller annual peaks generally trend just above the one-to-one line, suggesting a small bias toward overprediction. The largest annual peak is significantly over predicted at Bluffton and Dorchester. Although the simulations tend to produce higher annual peak flows than observed, R^2 values are relatively high, suggesting simulations reproduce the general watershed behavior at the three sites.

The accuracy of the model at different scales of discharge can be assessed using the flow duration curves in Figure 5-10. For the entire record (2003–2020), we ranked daily flows from largest to smallest and then plotted against the probability that the given flow will be equaled or exceeded. The flow duration curves for all three locations exhibit very similar patterns. The observed and simulated curves show good general agreement. The model demonstrates the ability to closely reproduce the probabilistic distribution of flows over the simulation period.

Based on the performance metrics, hydrographs, and auxiliary figures presented in this section, the GHOST model was deemed to be well-calibrated for the Upper Iowa River Watershed. It is therefore deemed suitable for use as a helpful tool for the IWA.
Figure 5-7. Comparison of simulated (black) and observed (blue) daily average discharge at Dorchester (top), Decorah (middle), and Bluffton (bottom).

Table 5-1. Performance parameters for the calibrated GHOST model.

<table>
<thead>
<tr>
<th>metric</th>
<th>Dorchester</th>
<th>Decorah</th>
<th>Bluffton</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSE</td>
<td>0.56</td>
<td>0.61</td>
<td>0.52</td>
</tr>
<tr>
<td>R^2</td>
<td>0.61</td>
<td>0.68</td>
<td>0.64</td>
</tr>
<tr>
<td>PBIAS</td>
<td>6%</td>
<td>9%</td>
<td>4%</td>
</tr>
</tbody>
</table>
Figure 5-8. Observed and simulated mean monthly runoff depths from 2003–2020 at Dorchester (top), Decorah (middle), and Bluffton (bottom).
Figure 5-9. Annual peak discharge plotted against a 1:1 line, showing how well modeled peaks matched observed values at Dorchester (top right), Decorah (top left), and Bluffton (bottom).
Figure 5-10. Daily flow duration curves at Dorchester (top), Decorah (middle), and Bluffton (bottom).

d. Implementation of IWA Projects in the Model
The calibrated GHOST model for the Upper Iowa River Watershed described in the preceding sections was used to evaluate the individual and cumulative hydrologic effects of the BMPs constructed as part of the IWA, with a particular focus on flood events. Chapter 6 provides a full catalogue of the 36 projects constructed in the Upper Iowa River Watershed, as well as in-depth
This section describes how the effects of the projects were incorporated in the hydrologic model.

Most projects provide significant flood mitigation benefits, with the exception of several grass waterways, grade stabilization projects, and oxbows. Design engineers provided stage-discharge curves for those projects that could store water. These curves detail how much water is discharged by the project based on the depth (stage) of water within the project’s retention basin. Therefore, discharge during an event can be calculated by using the inflow hydrograph to determine how much water is entering the project; using the total volume of water to calculate the depth; and using that depth with the stage-discharge curve to determine the outflow and volume of water leaving. This process is repeated iteratively at each timestep to generate the outflow hydrograph.

Inflow hydrographs are upstream of projects and therefore unaltered by the project; they can be retrieved from GHOST and/or design storms — flood events that produce pre-determined inflow hydrographs. These conditions serve as the “control” for comparison with the simulations with projects. Once outflow hydrographs are calculated by routing the inflow hydrographs through the stage-discharge curves, they replace the previous control hydrograph immediately downstream of each project. In GHOST, we introduce the outflow hydrographs onto elements adjacent to river segments. Rain is removed from the upstream drainage because the flow it would have produced is being replaced by the flow imposed by the outflow hydrograph. Figure 5-11 shows an example of the configuration used for several of the IWA projects in the Upper Iowa Watershed.

![Figure 5-11](image)

Legend
- River Network
- Project Segments
- Computational Mesh
- Dump Elements
- Rainless Elements

Figure 5-11. A portion of the GHOST model that shows how project effects are simulated by dumping the attenuated outflow hydrograph calculated for each project while eliminating rainfall upstream, which would produce the original, unaltered streamflow.

From the project locations, water continues downstream, whether it be from rainfall/groundwater (as is the case in the control version) or is introduced to the system based on the outflow
hydrograph that the projects produce. Therefore, the effect of the project can be analyzed at any point downstream, and cumulative effects of multiple projects are merged when their respective streams converge. Chapter 7 presents the results from testing the individual and cumulative impacts of the IWA projects during flooding.

6. Project Inventory

a. IWA Projects in the Upper Iowa Watershed

The Iowa Watershed Approach helped fund the design and construction of 36 new BMPs across the Upper Iowa Watershed, providing 90% cost-share assistance to volunteer landowners. A summary of the 36 projects is given in Table 6-1.
Table 6-1: Project Summary Table

<table>
<thead>
<tr>
<th>Project</th>
<th>Practice</th>
<th>Watershed</th>
<th>Cost</th>
<th>Drainage Area (acres)</th>
<th>Area</th>
<th>Berm Storage (ac-ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI-012-JEVNE</td>
<td>Grade Stabilization Structure/Pond</td>
<td>Trout Creek</td>
<td>$29,472.75</td>
<td>39</td>
<td></td>
<td>6.4</td>
</tr>
<tr>
<td>UI-005-DOWE</td>
<td>WASCOB</td>
<td>North Canoe Creek</td>
<td>n/a</td>
<td></td>
<td>minimal</td>
<td></td>
</tr>
<tr>
<td>UI-006-DOWE</td>
<td>Waterway</td>
<td>North Canoe Creek</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI-007-DOWE</td>
<td>Waterway</td>
<td>North Canoe Creek</td>
<td>$22,299.00</td>
<td>n/a</td>
<td>minimal</td>
<td></td>
</tr>
<tr>
<td>UI-013-CLAYTON</td>
<td>Pond</td>
<td>Canoe Creek</td>
<td>$132,910.33</td>
<td>253.1</td>
<td>36.5</td>
<td></td>
</tr>
<tr>
<td>UI-011-BEARD</td>
<td>Pond</td>
<td>Canoe Creek</td>
<td>$58,568.60</td>
<td>82</td>
<td>17.1</td>
<td></td>
</tr>
<tr>
<td>UI-033-HAGEMAN</td>
<td>WASCOB</td>
<td>Trout Creek</td>
<td>$15,370.00</td>
<td>20.2</td>
<td>minimal</td>
<td></td>
</tr>
<tr>
<td>UI-026-STORTZ</td>
<td>WASCOB</td>
<td>Canoe Creek</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI-027-STORTZ</td>
<td>Waterway</td>
<td>Canoe Creek</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI-028-STORTZ</td>
<td>WASCOB</td>
<td>Canoe Creek</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI-029-STORTZ</td>
<td>Waterway</td>
<td>Canoe Creek</td>
<td>$27,082.00</td>
<td>n/a</td>
<td>minimal</td>
<td></td>
</tr>
<tr>
<td>Project ID</td>
<td>Description</td>
<td>Location</td>
<td>Cost</td>
<td>Population Change</td>
<td>Sediment Change</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>UI-008-WEISS (WASCOB) UI-009-WEISS (Terrace)</td>
<td>Terrace/WASCOB N. Canoe</td>
<td>$21,924</td>
<td>n/a</td>
<td>minimal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI-036-HUINKER</td>
<td>Pond Nordness</td>
<td>$77,306</td>
<td>175</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI-038-HUINKER</td>
<td>Grad Stab Nordness</td>
<td>$27,313</td>
<td>52</td>
<td>minimal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI-037-HUINKER</td>
<td>Waterway Nordness</td>
<td>$27,313</td>
<td>52</td>
<td>minimal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI-040-NOVAK</td>
<td>Pond Trout Creek</td>
<td>$52,529</td>
<td>104</td>
<td>18.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI-041-ODE</td>
<td>Pond N. Canoe</td>
<td>$73,066</td>
<td>48</td>
<td>14.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI-022-WESELMANN_HAGEMAN</td>
<td>Road Structure Trout Creek</td>
<td>$235,300</td>
<td>79</td>
<td>31.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI-048-ROTHMEYER_NUMEDAHL</td>
<td>Road Structure Trout Creek</td>
<td>$419,600</td>
<td>952</td>
<td>131.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI-019-SEED_SAVERS</td>
<td>Grade Stabilization Structure Canoe Creek</td>
<td>$262,600</td>
<td>326</td>
<td>1.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI-039-BRANHAUGEN</td>
<td>Pond Nordness</td>
<td>$109,965</td>
<td>282</td>
<td>74.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI-017-ABBOTT_STEVENSON</td>
<td>Road Structure N. Canoe</td>
<td>$239,500</td>
<td>369</td>
<td>47.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI-020-ELSBERND_GEHLING</td>
<td>Road Structure Trout Creek</td>
<td>$165,800</td>
<td>492</td>
<td>145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI-053 BAUMLER</td>
<td>WASCOB Canoe</td>
<td>$39,247</td>
<td>n/a</td>
<td>minimal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI-052 BAUMLER</td>
<td>WASCOB Canoe</td>
<td>$45,000.00</td>
<td>n/a</td>
<td>minimal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI-063 WEBBER</td>
<td>Pond Canoe</td>
<td>$22,000.00</td>
<td>24.9</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI-051 TIMP</td>
<td>Pond Trout Creek</td>
<td>$77,000.00</td>
<td>68.2</td>
<td>13.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Code</td>
<td>Category</td>
<td>Location</td>
<td>Value</td>
<td>Acreage</td>
<td>EROD</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>UI-062 WEBBER</td>
<td>Pond</td>
<td>Canoe</td>
<td>$52,000.00</td>
<td>68.2</td>
<td>15.7</td>
<td></td>
</tr>
<tr>
<td>UI-066-KUHN</td>
<td>Waterways</td>
<td>Ten-Mile</td>
<td>$32,110</td>
<td>n/a</td>
<td>minimal</td>
<td></td>
</tr>
<tr>
<td>UI-059-KUHN</td>
<td>Pond</td>
<td>Ten-Mile</td>
<td>$36,000</td>
<td>46.8</td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td>UI-018-LYONS/FERRING</td>
<td>Road Structure</td>
<td>Coon</td>
<td>$180,000</td>
<td>129</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td>UI-049-JEWELL</td>
<td>Pond</td>
<td>Nordness</td>
<td>$240,000</td>
<td>250</td>
<td>78.2</td>
<td></td>
</tr>
<tr>
<td>UI-023-BECKER_WILTGEN</td>
<td>Road Structure</td>
<td>Nordness</td>
<td>$100,000</td>
<td>128.2</td>
<td>21.7</td>
<td></td>
</tr>
<tr>
<td>UI-025-LENSING_HAGEMAN</td>
<td>Road Structure</td>
<td>Trout Creek</td>
<td>$210,000</td>
<td>143.5</td>
<td>23.1</td>
<td></td>
</tr>
<tr>
<td>UI-032-BLEKEBERG</td>
<td>Wetland/Prairie</td>
<td>Ten-Mile</td>
<td>$130,000</td>
<td>316.9</td>
<td>70.7</td>
<td></td>
</tr>
<tr>
<td>UI-056-LIVELY</td>
<td>Wetland/Prairie</td>
<td>Ten-Mile</td>
<td>$210,000</td>
<td>691</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>
BMPs were constructed in all six of the HUC12s selected to be part of the IWA: the North Canoe Creek, Canoe Creek, Coon Creek, Community of Nordness, Trout Creek, and Ten Mile Creek watersheds. Figure 6-1 shows the location of the 36 projects in the Upper Iowa Watershed.

Figure 6-1: Location and type of the 36 IWA projects in the Upper Iowa Watershed. Note that in several instances, two projects are too close together to appear separate.

b. Hydraulics of Flood Mitigation Projects

Seven different types of BMPs were constructed in the Upper Iowa Watershed: 11 ponds, 7 on-road structures, 6 WASCOBS, 6 grassed waterways, 3 grade stabilization structures, 2 wetlands, 1 terrace project. Aside from grass waterways, most projects provide at least some runoff attenuation. However, some smaller types of projects are difficult to implement in the GHOST model due to the difference in project size versus mesh resolution. Therefore, only relatively large projects with relatively large upstream drainage area and flood storage such as ponds, on-road structures, and wetlands were incorporated into GHOST modeling. All these practices were assumed to follow the same hydraulic principle for flood attenuation.

Storage structures (ponds, wetlands, on-road structures) hold floodwater temporarily and gradually release it at a lower rate later. While the same volume of water ultimately enters and exits the
project, the peak flow is reduced, which can have minor to significant flood reduction benefits. Most flood damage is usually attributed to the peak flow, and not necessarily a prolonged moderate flow. Figure 6-2 illustrates a classic difference in streamflow with and without a storage project.

Figure 6-2: A classic comparison of a streamflow hydrograph with and without a flood mitigation project. The addition of the project does not change the volume of water moved but lowers the peak flow passed and gradually releases the water at lower rates.

A basic storage structure design (Figure 6-3) consists of an embankment that holds water back to fill up a storage pool. The pool might be a pond or a wetland, and in the case of on-road structures, the embankment is the roadway itself and the ditch area serves as the pool. A principal spillway (usually a pipe) allows water passage through the embankment, albeit with a maximum discharge — hence the streamflow reduction. During a flood event, water enters the pool and the principal spillway discharges its maximum flow downstream, while water begins to fill up the storage pool. As inflows decrease, the storage pool begins to empty out through the pipe, producing a delayed, gradual outflow. To avoid structural damage, an auxiliary/emergency spillway is constructed at a higher elevation than the pipe; this allows a high rate of discharge to prevent water from overtopping the embankment. Most principal spillways are also built above the bottom of the pool to allow a permanent/“dead” storage of water (ponds and wetlands avoid drying out). The storage volume between the principal and auxiliary spillways is referred to as “active” storage because this water level can fluctuate rapidly to attenuate flood events.
Figure 6-3: Schematic of a pond constructed to provide flood storage.

The effectiveness of any flood mitigation project depends on its storage volume and outlets — how quickly the water is released. A project with a properly sized principal spillway but an active volume that is too small would rapidly fill up and activate its auxiliary spillway, providing little-to-no peak reduction. On the other hand, a project with adequate volume but too large a principal spillway would pass most large inflows unchanged through the principal spillway, never holding water in its active volume.

c. Project Summary

As a result of the Iowa Watershed Approach, 36 new BMPs were constructed in the Upper Iowa Watershed:

- 11 Ponds
- 7 On-road Structures
- 6 WASCOBs
- 6 Grassed Waterways
- 3 Grade Stabilization Structures
- 2 Wetlands
- 1 Terrace

Most of these projects will provide meaningful storage and flood reduction benefits for the watershed, and all will help improve water quality. Ponds, wetlands, on-road structures, and WASCOBs all help to reduce peak flows and slow down the movement of water, allowing greater attenuation and removal of sediment, nutrients, and other pollutants. And while grass waterways generally don’t affect flow much, they help to prevent runoff from carrying sediment and pollutants into streams. We were not able to model all these projects because of the nature of the practice (e.g., grass waterways), their size, or their location. However, the hydrologic model was able to simulate the benefits that constructing many of these BMPs will likely have on the watershed going forward. The next chapter details the project-modeling process and summarizes the individual and cumulative benefits for the hydrology of the Upper Iowa Watershed.
7. Upper Iowa Hydrologic Assessment

a. Local Impacts of IWA Projects

In order to assess the flood reduction impacts of IWA projects in the Upper Iowa Watershed, a design storm was imposed on GHOST. The storm generated 6.5 inches of rain within a 24-hour period, as shown in Figure 7-1. The watershed response to this storm was measured first in a “control” version without projects to ensure that streamflow at the future project sites was consistent with expectations provided by the design engineers. For some projects, a different streamflow had to be introduced at the future project site, using the method described in Section 5, to more accurately match the inflow hydrographs that the projects were designed for.

![Rainfall hyetograph from the design storm used in GHOST to test the effects of projects on flood peak reductions.](image)

This first run provides a baseline comparison of how the watershed would react to a storm like this while no projects are present. Next, modelers added projects by imposing the outflow hydrographs at their respective locations (see Section Error! Reference source not found.5 for the full methodology). In these cases, streamflow immediately downstream of each project reflects the conditions with projects in place and can be compared to the control. The following analysis focuses on on-road structure UI-023, pond UI-036, pond UI-039, and pond UI-049 constructed within the Community of Nordness HUC12 and their effects on local streamflow response.

The Community of Nordness HUC12 is drained by a network of unnamed streams that ultimately feed into Trout Creek. Error! Reference source not found.5 Figure 7-2 shows the location of the constructed on-road structure and ponds, as well as five index points (A through E) where the flood-reduction benefits of the projects were assessed. In addition, Figure 7-2 presents modeled
hydrographs (with and without projects) associated with the design storm (Figure 7-1) at the selected index points. Tracking project benefits beginning upstream at index point A and working downstream to index point E helps to illustrate the individual and cumulative impacts projects have on stream flows.

On-road structure UI-023 created a 62% decrease in peak discharge just downstream at point A. At point B, where another larger drainage combines with point A’s stream, the impact of UI-023 is reduced, creating a 36% decrease in peak discharge. A similar trend occurs at all IWA projects – significant benefits immediately downstream of an individual project diminish with distance downstream, as the proportion of the total area draining through the project decreases.

The area draining to index point C is affected by both UI-023 and UI-036. The combined influence of the two projects produces a 56% decrease in peak flow, an increase in flow reduction benefit relative to point B.

Index point D is located on the same stream as point C, but near its mouth. Like the trend between points A and B, peak flow reduction is decreased to 43% as the proportion of the total drainage influenced by projects UI-023 and UI-036 also decreases.

Index point E drains all four projects in the Community of Nordness HUC12. However, because it is near the HUC12 outlet, its total drainage is much larger than the cumulative area draining through the projects. The projects create only a 4% decrease in peak flow at this location.

Similar maps showing project locations and simulated flow hydrographs (with and without projects) at index points are shown for Ten Mile Creek, Trout Creek, North Canoe and Canoe Creek, and Coon Creek in Figure 7-3 through Figure 7-6, respectively.
Figure 7-2. The location of projects UI-023, UI-036, UI-049, UI-039 within the Community of Nordness HUC12, along with hydrographs comparing the streamflow with (solid red) and without (dashed black) projects at points A, B, C, D, and E.
Figure 7-3. The location of projects UI-032, UI-056, and UI-059 within the Ten Mile Creek HUC12, along with hydrographs comparing the streamflow with (solid red) and without (dashed black) projects at points A, B, C, D, and E.
Figure 7-4. The location of several projects within the western portion of Trout Creek HUC12, along with hydrographs comparing the streamflow with (solid red) and without (dashed black) projects at points A, B, C, D, and E.
Figure 7-5. The location of several projects within the North Canoe and Canoe HUC12s, along with hydrographs comparing the streamflow with (solid red) and without (dashed black) projects at points A through H.
Figure 7-6. The location of project UI-018 within the Coon Creek HUC12, along with hydrographs comparing the streamflow with (solid red) and without (dashed black) projects at points A, B, C, and D.

b. Watershed-Scale Effects

Figure 7-7 summarizes peak flow reductions associated with the design storm (Figure 7-1) at the outlets of IWA HUC12 watersheds. At the HUC12 watershed scale, the influence of constructed
practices is small. The proportion of HUC12 area affected by practices, the position of practices within the HUC12, and the practices’ storage volumes all contribute to variability in peak reductions. Table 6-1 shows areas draining to individual projects and their total storage capacity. Table 7-1 compares the drainage areas of the Upper Iowa watershed, the HUC12 watersheds in which practices were constructed, and those influenced by the practices themselves.

Table 6-1 shows areas draining to individual projects and their total storage capacity.

<table>
<thead>
<tr>
<th>HUC12 Watershed</th>
<th>HUC12 % of UI Watershed Area</th>
<th>IWA Project Drainage Area (ac)</th>
<th>IWA Project % of HUC12 Area</th>
<th>IWA Project % of UI Watershed Area</th>
<th>IWA Project Flood Storage (ac-ft)</th>
<th>IWA Project Total Storage (ac-ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ten-Mile</td>
<td>20,398</td>
<td>3.2%</td>
<td>1054.7</td>
<td>5.2%</td>
<td>0.2%</td>
<td>87</td>
</tr>
<tr>
<td>Trout Creek</td>
<td>9,160</td>
<td>1.4%</td>
<td>1877.7</td>
<td>20.5%</td>
<td>0.3%</td>
<td>347</td>
</tr>
<tr>
<td>Nordness</td>
<td>11,421</td>
<td>1.8%</td>
<td>835.2</td>
<td>7.3%</td>
<td>0.1%</td>
<td>169</td>
</tr>
<tr>
<td>Coon</td>
<td>12,569</td>
<td>2.0%</td>
<td>129</td>
<td>1.0%</td>
<td>0.0%</td>
<td>25</td>
</tr>
</tbody>
</table>

Figure 7-7. Flood peak reduction (red text) at the outlets of HUC12s with projects.

Table 7-1. Drainage area and storage capacity of IWA Projects relative to their HUC12 and the Upper Iowa River Watershed (UI).
c. Limitations of the IWA Projects

While impactful on a local scale, the limited flood reduction benefits of IWA projects for downstream communities are not surprising when scrutinized from a broader perspective. Streamflow is ultimately related to a river’s drainage area; the larger the proportion of total drainage affected by flood mitigation projects, the more flood flows will be attenuated in the river. The total drainage area regulated by the IWA constructed on-road structures, pond, and wetlands is approximately 8 mi², only 5% of the IWA HUC12s and less than 1% of the entire Upper Iowa Watershed. It is not surprising, therefore, that peaks are not significantly reduced at IWA HUC12 outlets when a small proportion of the drainage area is captured by projects.

In addition to drainage area, the storage capacity provided by these projects is crucial in understanding their flood reduction capabilities. Storage is essentially the volume of water a project can hold back during a flood event. The total storage of the IWA projects is 859 ac-ft, which may be a difficult number to comprehend without some context.

During the flood of August 2016, the largest recent flood at Dorchester, over 184,000 ac-ft of water flowed past Dorchester. If the IWA projects had been in place during this event, they would have been able to hold back only about 0.5% of the floodwaters.

d. Future Implications

The impact of the 36 IWA projects is still significant, providing local flood reduction, water-quality, and wildlife habitat benefits. However, improvements on a watershed-scale would require significant additional investment and effort. To get an idea of the investment needed to produce watershed-scale flood-reduction benefits, Figure 7-8 shows the approximate cost to achieve a 20% peak reduction in the top-10 floods from 2000-2022, extrapolating from the total cost of Upper Iowa and other IWA storage projects. For many floods, a 20% peak reduction would make a significant difference in damages and costs incurred, and lives affected. The price tag to achieve this, however, is in the hundreds of millions of dollars.
8. Summary and Conclusions

The Upper Iowa River Watershed was one of eight distinct Iowa rural watersheds that participated in the IWA program. The goals of the IWA were: (1) reduce flood risk; (2) improve water quality; (3) increase flood resilience; (4) engage stakeholders through collaboration and outreach/education; (5) improve quality of life and health, especially for susceptible populations; and (6) develop a program that is scalable and replicable throughout the Midwest and the United States. The Phase I hydrologic assessment report provided an understanding of the watershed hydrology and the potential of various hypothetical flood mitigation strategies that may be leveraged to accomplish goals of the IWA. This process helped inform the location and construction of BMPs (ponds, wetlands, etc.) across the watershed, as part of Phase II. This report has presented a summary of water-quality conditions in the Upper Iowa, a catalogue of projects constructed, the model used to assess them, and the results of that evaluation.

a. Watershed Characteristics

The Upper Iowa River Watershed is a HUC8 draining to the Upper Mississippi River, located in northeast Iowa and southeast Minnesota, and lying on the Iowan Surface and Paleozoic Plateau landform regions. The Upper Iowa River Watershed is 1,000 mi², with over 73% of the watershed’s land area used for agriculture. Average annual precipitation in the Upper Iowa River Watershed
ranges from roughly 19 to 45 inches. Roughly 30% of the annual precipitation is transformed into streamflow and approximately 70% of the annual flow comes in the form of baseflow.

b. Water-Quality Conditions
Water-quality conditions are generally poor throughout the state of Iowa. One of the main goals of the IWA was to help address this problem. The water-quality analysis detailed in this report was conducted on observations made on the Upper Iowa River at Dorchester. Nitrate concentrations ranged from 0.05 mg/L and 13.3 mg/L with an average of 5.3 mg/L. TP concentrations ranged from 0.01 mg/L and 7.2 mg/L with an average of 0.18 mg/L. Yearly nitrate yields ranged from 4.0 lbs/ac to 44 lbs/ac, with an average of 20.4 lbs/ac. Yearly TP yields ranged from 0.2 lbs/ac to 5.5 lbs/ac, with an average of 1.4 lbs /ac. The nitrate yields from the Upper Iowa are greater than the rest of Iowa, while the TP yields are lower. Both the Mann-Kendall and Spearman trend detection tests indicated that daily concentrations were increasing for nitrate but decreasing for TP. Since mean daily streamflow was also increasing, the increased flow in the Upper Iowa likely offset any reductions seen in its TP concentrations.

c. Hydrologic Model
The modeling activities described in this report were performed using the physically based, integrated GHOST model developed at IIHR to simulate the hydrologic responses over time periods on the order of decades. GHOST stands for Generic Hydrologic Overland-Subsurface Toolkit. GHOST is based on the open-source hydrologic code MM-PIHM (Qu and Duffy 2007, Yu et al. 2013), which fully couples surface and subsurface domains to predict streamflow as well as groundwater movement for normal and extreme rainfall and snowmelt events. Model simulations were forced using 19 years (2002–2020) of hourly climatological data obtained from NLDAS. The simulations provided information not only on flood events, but also on the watershed’s hydrology during medium and low flows. The calibrated baseline model accurately predicted discharges relative to observations made at USGS stream gauges at Bluffton, Decorah, and Dorchester, and could therefore be used with confidence to assess watershed response to IWA projects. The effect of the projects was tested using a design storm imposed on the GHOST model.

d. IWA Project Summary
The Iowa Watershed Approach resulted in the construction of 36 BMPs across the Upper Iowa Watershed: 11 ponds, 7 on-road structures, 6 WASCOBs, 6 grassed waterways, 3 grade stabilization structures, 2 wetlands, and 1 terrace. Projects were constructed in all 6 IWA HUC12 subwatersheds. More than half of the projects are expected to provide a reasonable degree of flood storage capability, creating attenuation and delayed release of peak flood flows.

e. Evaluation of the IWA Projects
The hydrologic model constructed in Phase II of the IWA was used to evaluate the individual and cumulative flood reduction impacts of the IWA projects. Significant flood reduction benefits were
realized immediately downstream of constructed projects. However, benefits decreased rapidly further downstream, as total watershed area increased and proportion of the watershed affected by projects decreased. In the Community of Nordness HUC12, a 62% peak flow reduction was stimulated immediately downstream of an on-road project site. This reduction diminished as streamflow increased downstream from the sites until the peak flow reduction was less than 4% in Community of Nordness HUC12 outlet.

Because of the limited number and size of projects, cumulative impacts on the watershed-scale were small. For the simulated design storm, peak flows were reduced by 0.3% or less below the Ten Mile Creek, North Canoe Creek, Canoe Creek, and Coon Creek HUC12s outlets. The outlets of the Community of Nordness and Trout Creek HUC12s saw 3.8% and 13% peak flow reductions, respectively, due to the IWA projects.

The 36 IWA projects regulate drainage from approximately 8 mi² and can store more than 859 ac-ft of flood water. However, these capacities are dwarfed by the size of the entire Upper Iowa River Watershed. Less than 1% of the entire drainage area is regulated by these projects. And if the projects had been in place during the flood of 2016, they would have been able to store just 0.5% of the flood waters that passed through Dorchester. An incredible investment in upstream flood mitigation infrastructure and land management would be required in the Upper Iowa River Watershed to begin to address large scale flooding. Based on the storage achieved by the $3.3 million spent in the Upper Iowa during Phase II of IWA, hundreds of millions of dollars would be required to reduce the top-10 floods by 20% between 2000 and 2022. However, that price tag seems less daunting when compared to the damages and costs associated with major floods of the past: over $5 billion and 17 lives lost in 1993, and over $12 billion, one life lost, and thousands of Iowans impacted in 2008.

f. Conclusion

A review of available data demonstrates the urgent need to mitigate flood hazards and poor water quality in the Upper Iowa River Watershed. The Iowa Nutrient Reduction Strategy identifies a suite of best management practices to address poor water quality in Iowa streams, many of which have secondary flood mitigation benefits. Based on guidance provided by IWA Phase I and expressed interest from watershed stakeholders, 36 best management practices were constructed within the four Upper Iowa River study sub-watersheds. The IWA project team used the GHOST hydrologic model to evaluate the flood mitigation performance of 18 constructed on-road structures, ponds, and wetlands. Project evaluations demonstrated significant localized flood mitigation benefits. The magnitudes and downstream extents of local flood mitigation benefits are dependent upon the type of practice, its size relative to its upstream drainage, and the influences of downstream tributaries and receiving streams. Unfortunately, the constructed projects do not have significant flood mitigation benefits at sub-watershed and Upper Iowa River Watershed scales. Realization of watershed-scale benefits will require substantial additional investments in best management practices throughout the Upper Iowa River Watershed. The Iowa Watershed
Approach, through establishment of Watershed Management Authorities, watershed hydrologic assessments, and construction and evaluation of best management practices, has created a framework from which management efforts can continue and watershed-scale benefits can ultimately be achieved.
Appendix A – References

